forked from ShijieZhou-UCLA/DreamScene360
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtext2pano_self_refine_pipeline.py
278 lines (251 loc) · 18.2 KB
/
text2pano_self_refine_pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
import os
import time
import argparse
import csv, json
import cv2, base64
from tqdm import tqdm
import requests
import random
import torch
from datetime import datetime
from PIL import Image
import sys
sys.path.append('stitch_diffusion/kohya_trainer')
from stitch_diffusion.kohya_trainer.StitchDiffusionPipeline import StitchDiffusion, my_args
def encode_img(image_path):
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')
def load_img(image_path):
base64_image = encode_img(image_path)
image_meta = "data:image/png;base64" if 'png' in image_path else "data:image/jpeg;base64"
img_dict = {
"type": "image_url",
"image_url": {
"url": f"{image_meta},{base64_image}",
"detail": "low"
}
}
return img_dict
def llm_request(transcript=None, temp=0.):
max_tokens = 512
wait_time = 10
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {api_key}"
}
data = {
'model': 'gpt-4-vision-preview',
'max_tokens':max_tokens,
'temperature': temp,
'top_p': 0.5,
'messages':[]
}
if transcript is not None:
data['messages'] = transcript
response_text, retry, response_json = '', 0, None
while len(response_text)<2:
retry += 1
try:
response = requests.post("https://api.openai.com/v1/chat/completions", headers=headers, data=json.dumps(data))
response_json = response.json()
except Exception as e:
if random.random()<1: print(e)
time.sleep(wait_time)
continue
if response.status_code != 200:
print(response.headers,response.content)
if random.random()<0.01: print(f"The response status code for is {response.status_code} (Not OK)")
time.sleep(wait_time)
data['temperature'] = min(data['temperature'] + 0.2, 1.0)
continue
if 'choices' not in response_json:
time.sleep(wait_time)
continue
response_text = response_json["choices"][0]["message"]["content"]
return response_json["choices"][0]["message"]["content"]
def llm_init_prompt(user_prompt, img_prompt, idea_transcript, args):
transcript = [{ "role": "system", "content": [] }, {"role": "user", "content": []}]
# System prompt
transcript[0]["content"].append("You are a helpful assistant.\n\nInstruction: Given a user imagined IDEA of the scene, converting the IDEA into a self-contained sentence prompt that will be used to generate an image.\n")
transcript[0]["content"].append("Here are some rules to write good prompts:\n")
transcript[0]["content"].append("- Each prompt should consist of a description of the scene followed by modifiers divided by commas.\n- The modifiers should alter the mood, style, lighting, and other aspects of the scene.\n- Multiple modifiers can be used to provide more specific details.\n- When generating prompts, reduce abstract psychological and emotional descriptions.\n- When generating prompts, explain images and unusual entities in IDEA with detailed descriptions of the scene.\n- Do not mention 'given image' in output, use detailed texts to describe the image in IDEA instead.\n- Generate diverse prompts.\n- Each prompt should have no more than 50 words.\n")
## Example & Query prompt
transcript[-1]["content"] = transcript[-1]["content"] + idea_transcript
transcript[-1]["content"].append("Based on the above information, you will write %d detailed prompts exactly about the IDEA follow the rules. Each prompt is wrapped with <START> and <END>.\n"%args.num_prompt)
response = llm_request(transcript)
if '<START>' not in response or '<END>' not in response: ## one format retry
response = llm_request(transcript, temp=0.1)
if args.verbose:
print('llm_init_prompt IDEA: %s.\n %s\n'%(user_prompt,response))
prompts = response.split('<START>')[1:]
prompts = [x.strip().split('<END>')[0] for x in prompts]
return prompts
def llm_reflection_prompt_selectbest(user_prompt, img_prompt, idea_transcript, listofimages, args):
num_img = len(listofimages)
transcript = [{ "role": "system", "content": [] }, {"role": "user", "content": []}]
# System prompt
transcript[0]["content"].append("You are a helpful assistant.\n\nYou are a judge to rank provided images. Below are %d images generated by an AI art generation model, indexed from 0 to %d."%(num_img,num_img-1))
transcript[0]["content"].append("From scale 1 to 10, decide how similar each image is to the user imagined IDEA of the scene.")
transcript[-1]["content"] = transcript[-1]["content"] + idea_transcript
for img_i in range(num_img):
transcript[-1]["content"].append("%d. "%img_i)
transcript[-1]["content"].append(load_img(listofimages[img_i]))
transcript[-1]["content"].append("Let's think step by step. Check all aspects to see how well these images strictly follow the content in IDEA, including having correct object counts, attributes, entities, relationships, sizes, appearance, and all other descriptions in the IDEA. Then give a score for each input images. Finally, consider the scores and select the image with the best overall quality with image index 0 to %d wrapped with <START> and <END>. Only wrap single image index digits between <START> and <END>."%(num_img-1))
response = llm_request(transcript)
if '<START>' not in response or '<END>' not in response: ## one format retry
response = llm_request(transcript, temp=0.1)
if args.verbose:
print('llm_reflection_prompt_selectbest\n %s\n'%(response))
if '<START>' not in response or '<END>' not in response:
return random.randint(0,num_img-1), response
prompts = response.split('<START>')[1]
prompts = prompts.strip().split('<END>')[0]
return int(prompts) if prompts.isdigit() else random.randint(0,num_img-1), response
def llm_reflection_prompt_textreflection(user_prompt, img_prompt, idea_transcript, round_best, listofimages, image_history, prompt_history, reflection_history, args):
current_round = len(image_history)
transcript = [{ "role": "system", "content": [] }, {"role": "user", "content": []}]
# System prompt
transcript[0]["content"].append("You are a helpful assistant.\n\nYou are iteratively refining the sentence prompt by analyzing the images produced by an AI art generation model, seeking to find out the differences between the user imagined IDEA of the scene and the actual output.\n")
transcript[0]["content"].append("If the generated image is not perfect, provide key REASON on ways to improve the image and sentence prompt to better follow the user imagined IDEA of the scene. Here are some rules to write good key REASON:\n")
transcript[0]["content"].append("- Carefully compare the current image with the IDEA to strictly follow the details described in the IDEA, including object counts, attributes, entities, relationships, sizes, and appearance. Write down what is different in detail.\n- Avoid hallucinating information or asks that is not mentioned in IDEA.\n- Explain images and unusual entities in IDEA with detailed text descriptions of the scene.\n- Explain how to modify prompts to address the given reflection reason.\n- Focus on one thing to improve in each REASON. \n- Avoid generating REASON identical with the REASON in previous rounds.\n")
transcript[-1]["content"] = transcript[-1]["content"] + idea_transcript
transcript[-1]["content"].append("This is the round %d of the iteration.\n")
if current_round!=1:
transcript[-1]["content"].append("The iteration history are:\n")
for rounds in range(0,len(image_history)-1):
transcript[-1]["content"].append("Round %d:\nGenerated sentence prompt: %s\nCorresponding image generated by the AI art generation model:"%(rounds+1,prompt_history[rounds]))
transcript[-1]["content"].append(load_img(image_history[rounds]))
transcript[-1]["content"].append("However, %s."%(reflection_history[rounds]))
transcript[-1]["content"].append("Generated sentence prompt for current round %d is: %s\nCorresponding image generated by the AI art generation model:"%(current_round,prompt_history[-1]))
transcript[-1]["content"].append(load_img(image_history[-1]))
transcript[-1]["content"].append("Based on the above information, you will write REASON that is wrapped with <START> and <END>.\n REASON: ")
response = llm_request(transcript)
if '<START>' not in response or '<END>' not in response: ## one format retry
response = llm_request(transcript, temp=0.1)
if args.verbose:
print('llm_reflection_prompt_textreflection\n %s\n'%(response))
# return response
if '<START>' not in response or '<END>' not in response:
return response
prompts = response.split('<START>')[1]
prompts = prompts.strip().split('<END>')[0]
return prompts
def llm_revision_prompt(user_prompt, img_prompt, idea_transcript, image_history, prompt_history, reflection_history, args):
current_round = len(image_history)
transcript = [{ "role": "system", "content": [] }, {"role": "user", "content": []}]
# System prompt
transcript[0]["content"].append("You are a helpful assistant.\n\nInstruction: Given a user imagined IDEA of the scene, converting the IDEA into a sentence prompt that will be used to generate an image.\n")
transcript[0]["content"].append("Here are some rules to write good prompts:\n")
transcript[0]["content"].append("- Each prompt should consist of a description of the scene followed by modifiers divided by commas.\n- The modifiers should alter the mood, style, lighting, spatial details, and other aspects of the scene.\n- Multiple modifiers can be used to provide more specific details.\n- When generating prompts, reduce abstract psychological and emotional descriptions.\n- When generating prompts, explain images and unusual entities in IDEA with detailed descriptions of the scene.\n- Do not mention 'given image' in output, use detailed texts to describe the image in IDEA.\n- Generate diverse prompts.\n- Output prompt should have less than 50 words.\n")
## Example & Query prompt
transcript[-1]["content"] = transcript[-1]["content"] + idea_transcript
transcript[-1]["content"].append("You are iteratively improving the sentence prompt by looking at the images generated by an AI art generation model and find out what is different from the given IDEA.\n")
transcript[-1]["content"].append("This is the round %d of the iteration.\n"%current_round)
if current_round!=1:
transcript[-1]["content"].append("The iteration history are:\n")
for rounds in range(0,len(image_history)-1):
transcript[-1]["content"].append("Round %d:\nGenerated sentence prompt: %s\nCorresponding image generated by the AI art generation model:"%(rounds+1,prompt_history[rounds]))
transcript[-1]["content"].append(load_img(image_history[rounds]))
transcript[-1]["content"].append("However, %s."%(reflection_history[rounds]))
transcript[-1]["content"].append("Generated sentence prompt for current round %d is: %s\nCorresponding image generated by the AI art generation model:"%(current_round,prompt_history[-1]))
transcript[-1]["content"].append(load_img(image_history[-1]))
transcript[-1]["content"].append("However, %s."%(reflection_history[-1]))
transcript[-1]["content"].append("Based on the above information, to improve the image, you will write %d detailed prompts exactly about the IDEA follow the rules. Make description of the scene more detailed and add modifiers to address the given key reasons to improve the image. Avoid generating prompts identical with the ones in previous rounds. Each prompt is wrapped with <START> and <END>.\n"%args.num_prompt)
response = llm_request(transcript)
if '<START>' not in response or '<END>' not in response: ## one format retry
response = llm_request(transcript, temp=0.1)
if args.verbose:
print('llm_revision_prompt IDEA: %s.\n %s\n'%(user_prompt,response))
prompts = response.split('<START>')[1:]
prompts = [x.strip().split('<END>')[0] for x in prompts]
while len(prompts)<args.num_prompt:
prompts = prompts + ['blank image']
return prompts
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--api_key", type=str, help="OpenAI GPT-4V API key; https://platform.openai.com/docs/guides/vision")
parser.add_argument("--testfile", type=str, default="testsample.txt")
parser.add_argument("--num_img", type=int, default=1, help="number of images to generate per prompt")
parser.add_argument("--num_prompt", type=int, default=3, help="number of prompts to search each round")
parser.add_argument("--max_rounds", type=int, default=3, help="max number of iter rounds")
parser.add_argument("--verbose", default=False, action="store_true")
parser.add_argument("--foldername", type=str, default="candidates")
parser.add_argument("--strength", type=float, default=1.00, help="strength of img2img pipeline")
parser.add_argument("--final_name", default='image', type = str, help="name of file with best img")
args = parser.parse_args()
assert(args.num_img==1)
global api_key
api_key = args.api_key
os.system('mkdir -p self_refinement/%s'%args.foldername)
os.system('mkdir -p self_refinement/%s/iter'%args.foldername)
os.system('mkdir -p self_refinement/%s/round1'%args.foldername)
os.system('mkdir -p self_refinement/%s/iter_best'%args.foldername)
os.system('mkdir self_refinement/%s/tmp'%args.foldername)
sample_list = [x.strip() for x in list(open(args.testfile,'r'))]
t2i_model = StitchDiffusion(my_args)
for sample_ii in tqdm(range(len(sample_list))):
user_prompt, img_prompt = sample_list[sample_ii], None
prompt_list = user_prompt.split('<IMG>')
user_prompt = user_prompt.split('<IMG>')[0] ## legacy, for naming use only
idea_transcript = []
for ii in range(len(prompt_list)):
if ii == 0:
idea_transcript.append("IDEA: %s."%prompt_list[0])
elif ii%2==1:
idea_transcript.append(load_img(prompt_list[ii]))
elif ii%2==0:
idea_transcript.append("%s"%prompt_list[ii])
idea_transcript.append("End of IDEA.\n")
text_record = 'self_refinement/%s/tmp/%s.txt'%(args.foldername,user_prompt.replace(' ','').replace('.',''))
os.system('mkdir self_refinement/%s/tmp/%s'%(args.foldername,user_prompt.replace(' ','').replace('.','')))
### LLM prompting iter
current_prompts, prompt_history, select_history, image_history, reflection_history, bestidx_history = [],[],[],[],[],[]
for rounds in range(args.max_rounds):
if args.verbose: print('ROUND %d:\n'%rounds)
###### new rounds' prompt (init/revision)
if rounds == 0:
llm_prompts = llm_init_prompt(user_prompt, None, idea_transcript, args)
else:
llm_prompts = llm_revision_prompt(user_prompt, None, idea_transcript, image_history, prompt_history, reflection_history, args)
current_prompts = llm_prompts
###### t2i generation
for ii in range(args.num_prompt):
for jj in range(args.num_img):
t2i_model.inference(llm_prompts[ii],'self_refinement/%s/tmp/%s/%d_%d_%d.png'%(args.foldername,user_prompt.replace(' ','').replace('.',''),rounds,ii,jj))
###### reflection: first select best, then give reason to improve (i.e., reflection)
round_best, select_response = llm_reflection_prompt_selectbest(user_prompt, img_prompt, idea_transcript, ['self_refinement/%s/tmp/%s/%d_%d_0.png'%(args.foldername,user_prompt.replace(' ','').replace('.',''),rounds,ii) for ii in range(args.num_prompt)], args)
## select the best, give an index. two separate calls
prompt_history.append(current_prompts[round_best])
select_history.append('Round selection: %d. || '%round_best+select_response)
image_history.append('self_refinement/%s/tmp/%s/%d_%d_0.png'%(args.foldername,user_prompt.replace(' ','').replace('.',''),rounds,round_best))
bestidx_history.append(round_best)
if rounds!=args.max_rounds-1:
reflection_text = llm_reflection_prompt_textreflection(user_prompt, img_prompt, idea_transcript, round_best, ['self_refinement/%s/tmp/%s/%d_%d_0.png'%(args.foldername,user_prompt.replace(' ','').replace('.',''),rounds,ii) for ii in range(args.num_prompt)], image_history, prompt_history, reflection_history, args)
else:
reflection_text = ''
reflection_history.append(reflection_text)
trace_string = ''
trace_string += '===========\nEnd of round %d:\n'%rounds
trace_string += 'user_prompt: %s\n'%user_prompt
trace_string += 'image_history: %s\n'%image_history[-1]
trace_string += 'select_history: %s\n'%select_history[-1]
trace_string += 'prompt_history: %s\n'%prompt_history[-1]
trace_string += 'reflection_history: %s\n===========\n'%reflection_history[-1]
print(trace_string)
with open(text_record, 'a') as f:
f.write(trace_string)
if rounds == 0:
os.system('cp %s self_refinement/%s/round1/%s.png'%(image_history[-1],args.foldername,user_prompt.replace(' ','').replace('.','')))
## save indexed image
os.system('cp %s self_refinement/%s/iter/%s.png'%(image_history[-1],args.foldername,user_prompt.replace(' ','').replace('.','')))
start_ind = 0 #1
global_best, select_response = llm_reflection_prompt_selectbest(user_prompt, img_prompt, idea_transcript, image_history[start_ind:], args)
global_best += start_ind
os.system('cp %s self_refinement/%s/iter_best/%s.png'%(image_history[global_best],args.foldername, args.final_name))
with open(text_record, 'a') as f:
f.write('Final selection: %d. || '%global_best+select_response)
f.write('===========\nFinal Selection: Round: %d.\n==========='%global_best)
for key in ['round1','iter','iter_best']:
os.system('cp -r self_refinement/%s/%s self_refinement/%s/tmp/%s'%(args.foldername,key,args.foldername,key))
if __name__ == '__main__':
main()