-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtumor.yaml
99 lines (89 loc) · 3.49 KB
/
tumor.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
#######http://www.mpip.sdnu.edu.cn/##############################################################
#######https://pyradiomics.readthedocs.io/en/latest/index.html###################################
#######MRI-based Radiomics Extraction using PyRadiomics #########################################
imageType:
Original: {}
LoG:
# If the in-plane spacing is large (> 2mm), consider removing sigma value 1.
sigma: [1.0, 3.0, 5.0]
Wavelet: {}
#start_level: 0
#level: 3
#wavelet: 'coif1' # There are many other wavelet algorithms.
#Square: {}
#SquareRoot: {}
#Logarithm: {}
#Exponential: {}
#Gradient:{}
#LocalBinaryPattern2D:{}
#LocalBinaryPattern3D:{}
featureClass:
shape:
firstorder:
glcm: # Disable SumAverage by specifying all other GLCM features available
- 'Autocorrelation'
- 'JointAverage'
- 'ClusterProminence'
- 'ClusterShade'
- 'ClusterTendency'
- 'Contrast'
- 'Correlation'
- 'DifferenceAverage'
- 'DifferenceEntropy'
- 'DifferenceVariance'
- 'JointEnergy'
- 'JointEntropy'
- 'Imc1'
- 'Imc2'
- 'Idm'
- 'Idmn'
- 'Id'
- 'Idn'
- 'InverseVariance'
- 'MaximumProbability'
- 'SumEntropy'
- 'SumSquares'
glrlm:
glszm:
gldm:
ngtdm:
setting:
# Normalization:
# MR signal is usually relative, with large differences between scanners and vendors. By normalizing the image before
# feature calculation, this confounding effect may be reduced. However, if only one specific scanner is used, or the
# images reflect some absolute world value (e.g. ADC maps, T2maps (NOT T2 weighted)), consider disabling the
# normalization.
normalize: true
normalizeScale: 100 # This allows you to use more or less the same bin width.
# Resampling:
# Not enabled in this example. However, because texture calculation assumes isotropic spacing, a forced 2D extraction
# is used, therefore only requiring the voxels to be isotropic in-plane. Enable pre-cropping to reduce memory
# footprint and speed up applying the filters.
preCrop: true
# Forced 2D extracion:
# This allows to calculate texture features using anisotropic voxels (although it assumes that voxels are isotropic
# in-plane). This is an alternative to resampling the image to isotropic voxels.
#force2D: true
#force2Ddimension: 0 # axial slices, for coronal slices, use dimension 1 and for sagittal, dimension 2.
# Mask validation:
# correctMask and geometryTolerance are not needed, as both image and mask are resampled, if you expect very small
# masks, consider to enable a size constraint by uncommenting settings below:
#minimumROIDimensions: 2
#minimumROISize: 50
# Image discretization:
# The ideal number of bins is somewhere in the order of 16-128 bins. A possible way to define a good binwidt is to
# extract firstorder:Range from the dataset to analyze, and choose a binwidth so, that range/binwidth remains approximately
# in this range of bins.
binWidth: 5
# first order specific settings:
# When normalizing, gray values below the mean will be negative. Shifting by 300 (3 StdDevs * 100) ensures that the
# majority of voxels is positive (only outliers >3 SD lower than the mean will be negative).
voxelArrayShift: 300
# Misc:
# default label value. Labels can also be defined in the call to featureextractor.execute, as a commandline argument,
# or in a column "Label" in the input csv (batchprocessing)
label: 1
#voxelSetting:
# kernelRadius: 2
# maskedKernel: true
# initValue: nan