-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathDL.py
150 lines (123 loc) · 5.69 KB
/
DL.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
# Deeplearning-based radiomics
from __future__ import print_function
import logging
import os
import pandas
import SimpleITK as sitk
import numpy as np
import collections
import SimpleITK as sitk
from scipy.ndimage.interpolation import zoom
import os,sys
import pandas as pd
from tensorflow.keras.preprocessing import image
from tensorflow.keras.applications.resnet50 import ResNet50
from tensorflow.keras.applications.imagenet_utils import preprocess_input, decode_predictions
from tensorflow.keras.models import Model
# CNN
base_model = ResNet50(weights='imagenet', include_top=True)
from tensorflow.keras.models import Model
model = Model(inputs=base_model.input, outputs=base_model.layers[-1].output)
# Feature Extraction
# Cropping box
def maskcroppingbox(images_array, use2D=False):
images_array_2 = np.argwhere(images_array)
(zstart, ystart, xstart), (zstop, ystop, xstop) = images_array_2.min(axis=0), images_array_2.max(axis=0) + 1
empty = []
for i in range(zstart, zstop):
test_array = images_array[i, :, :]
num = test_array.sum()
empty.append(num)
max_index = empty.index(max(empty)) + 1
return (zstart, ystart, xstart), (zstop, ystop, xstop), max_index
def featureextraction(imageFilepath, maskFilepath):
image_array = sitk.GetArrayFromImage(imageFilepath)
mask_array = sitk.GetArrayFromImage(maskFilepath)
(zstart, ystart, xstart), (zstop, ystop, xstop), maxIndex = maskcroppingbox(mask_array, use2D=False)
roi_images = image_array[zstart - 1:zstop + 1, ystart:ystop, xstart:xstop].transpose((2, 1, 0))
roi_images1 = zoom(roi_images, zoom=[224 / roi_images.shape[0], 224 / roi_images.shape[1], 1], order=3)
roi_images2 = np.array(roi_images1, dtype=np.float)
x = image.img_to_array(roi_images2)
x_order = np.asarray(x[:, :, maxIndex])
x_befor = np.asarray(x[:, :, maxIndex - 1])
x_later = np.asarray(x[:, :, maxIndex + 1])
a = np.asarray(x_order)
b = np.asarray(x_befor)
c = np.asarray(x_later)
mylist = [b, a, c]
x = np.asarray(mylist)
x = np.expand_dims(x, axis=0)
# print('multi channel x shape:', x.shape) # multi channel x shape: (3, 1, 224, 224)
x = np.transpose(x, (0, 2, 3, 1))
# print('x1.shape:', x.shape) # x1.shape: (1, 224, 224, 43)
x = preprocess_input(x)
base_model_pool_features = model.predict(x)
features = base_model_pool_features[0]
deeplearningfeatures = collections.OrderedDict()
for ind_, f_ in enumerate(features):
deeplearningfeatures[str(ind_)] = f_
return deeplearningfeatures
def main():
outPath = 'D:/BM-GBM/'
inputCSV = os.path.join(outPath, 'example.csv')
outputFilepath = os.path.join(outPath+'/'+'example-DLR.csv')
# Configure logging
rLogger = logging.getLogger('DLradiomics')
# Initialize logging for batch log messages
logger = rLogger.getChild('batch')
# logger.info('pyradiomics version: %s', radiomics.__version__)
logger.info('Loading CSV')
# ####### Up to this point, this script is equal to the 'regular' batchprocessing script ########
try:
# Use pandas to read and transpose ('.T') the input data
# The transposition is needed so that each column represents one test case. This is easier for iteration over
# the input cases
flists = pandas.read_csv(inputCSV).T
except Exception:
logger.error('CSV READ FAILED', exc_info=True)
exit(-1)
logger.info('Loading Done')
logger.info('Patients: %d', len(flists.columns))
# Instantiate a pandas data frame to hold the results of all patients
results = pandas.DataFrame()
for entry in flists: # Loop over all columns (i.e. the test cases)
logger.info("(%d/%d) Processing Patient (Image: %s, Mask: %s)",
entry + 1,
len(flists),
flists[entry]['Image'],
flists[entry]['Mask'])
imageFilepath = flists[entry]['Image']
maskFilepath = flists[entry]['Mask']
label = flists[entry].get('Label', None)
if str(label).isdigit():
label = int(label)
else:
label = None
if (imageFilepath is not None) and (maskFilepath is not None):
featureVector = flists[entry] # This is a pandas Series
featureVector['Image'] = os.path.basename(imageFilepath)
featureVector['Mask'] = os.path.basename(maskFilepath)
try:
# PyRadiomics returns the result as an ordered dictionary, which can be easily converted to a pandas Series
# The keys in the dictionary will be used as the index (labels for the rows), with the values of the features
# as the values in the rows.
# color_channel = 0
im=sitk.ReadImage(imageFilepath)
mask=sitk.ReadImage(maskFilepath)
result = pandas.Series(featureextraction(im, mask))
featureVector = featureVector.append(result)
except Exception:
logger.error('FEATURE EXTRACTION FAILED:', exc_info=True)
# To add the calculated features for this case to our data frame, the series must have a name (which will be the
# name of the column.
featureVector.name = entry
# By specifying an 'outer' join, all calculated features are added to the data frame, including those not
# calculated for previous cases. This also ensures we don't end up with an empty frame, as for the first patient
# it is 'joined' with the empty data frame.
results = results.join(featureVector, how='outer') # If feature extraction failed, results will be all NaN
logger.info('Extraction complete, writing CSV')
# .T transposes the data frame, so that each line will represent one patient, with the extracted features as columns
results.T.to_csv(outputFilepath, index=False, na_rep='NaN')
logger.info('CSV writing complete')
if __name__ == '__main__':
main()