-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfftlog.py
177 lines (150 loc) · 5.43 KB
/
fftlog.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import numpy as np
from scipy.interpolate import interp1d
from scipy.special import loggamma
from numpy.fft import rfft, irfft
def _select_bias(
l: float,
nu: float,
):
"""Computes the bias parameter q(nu); eq. (20) of https://arxiv.org/abs/1709.02401"""
# these numbers were taken from https://github.com/hsgg/twoFAST.jl
# they do not appear directly in https://arxiv.org/abs/1709.02401
n1 = 0.9
n2 = 0.9999
qmin = max(n2 - 1.0 - nu, -l)
qmax = min(n1 + 3.0 - nu, 2.0)
qbest = (2. + n1 + n2 ) / 2. - nu
q = qbest
if not (qmin < q and q < qmax):
q = (qmin + 2. * qmax) / 3.
return q
def _window(
value: float,
xmin: float,
xmax: float,
xleft: float,
xright: float,
):
"""Computes the window function"""
result = 0
if (xmin <= xleft and xleft <= xright and xright <= xmax):
if (value > xleft and value < xright and value > xmin and value < xmax):
result = 1.0
elif (value <= xmin or value >= xmax):
result = 0.0
else:
if (value < xleft and value > xmin):
result = (value - xmin) / (xleft - xmin)
elif (value > xright and value < xmax):
result = (xmax - value) / (xmax - xright)
result = result - np.sin(2 * np.pi * result) / 2. / np.pi
return result
def _coefficients(
t: float,
q: float,
l: float,
alpha: float,
):
"""Computes the coefficients M^{q(nu)}_{\ell}; eq. (16) of https://arxiv.org/abs/1709.02401"""
n = q - 1 - t * 1j
return \
pow(alpha, t * 1j - q) \
* pow(2, n - 1) \
* np.sqrt(np.pi) \
* np.exp(
loggamma((1 + l + n) / 2) - loggamma((2 + l - n) / 2)
)
class FFTlog:
def __init__(
self,
x,
y,
param_bessel: float, # formally the \ell parameter
param_power: float, # formally the n parameter
size: int, # number of sampling points for the FFTlog
kind='cubic', # interpolation type; same options as `kind` parameter of `scipy.interpolate.interp1d`
):
self.xmin = min(x)
self.xmax = max(x)
self.size = size
self.param_bessel = param_bessel
self.param_power = param_power
self.x_fft = None
self.y_fft = None
# setting up the interpolation
self._interpolation = interp1d(x, y, kind=kind)
def _fft_input(
self,
q: float,
):
halfsize = self.size // 2 + 1
L = 2 * np.pi * self.size / np.log(self.xmax / self.xmin)
input_x_mod = np.zeros(self.size)
for i in range(self.size):
input_x_mod[i] = self.xmin * pow(self.xmax / self.xmin, i / self.size)
input_y_mod = np.zeros(self.size)
for i in range(self.size):
input_y_mod[i] = \
pow(self.xmax / self.xmin, (3. - q) * i / self.size) \
*self._interpolation(self.xmin * pow(self.xmax / self.xmin, i / self.size)) \
*_window(
self.xmin*pow(self.xmax / self.xmin, i / self.size),
self.xmin,
self.xmin*pow(self.xmax / self.xmin, (self.size - 1) / self.size),
# these numbers were taken from https://github.com/hsgg/twoFAST.jl
# they do not appear directly in https://arxiv.org/abs/1709.02401
np.exp(0.46) * self.xmin,
np.exp(-0.46) * self.xmin * pow(self.xmax/self.xmin, (self.size - 1) / self.size)
)
input_y_fft = rfft(input_y_mod)
output_y = np.zeros(halfsize, dtype = "complex_")
for i in range(halfsize):
output_y[i] = \
_window(
input_x_mod[halfsize - 2 + i],
self.xmin,
self.xmin * pow(self.xmax / self.xmin, (self.size - 1) / self.size),
np.exp(0.46) * self.xmin,
np.exp(-0.46) * self.xmin * pow(self.xmax / self.xmin, (self.size - 1) / self.size)
) \
* np.conj(input_y_fft[i]) \
/ L
return output_y
def transform(
self,
x0: float, # smallest value of the output; should be roughly 1 / max(x)
):
halfsize = self.size // 2 + 1
bias = _select_bias(self.param_bessel, self.param_power)
G = np.log(self.xmax / self.xmin)
input_y_fft = self._fft_input(
bias + self.param_power,
)
output_x = np.array([
x0 \
* pow(self.xmax / self.xmin, i / self.size) \
for i in range(self.size)
])
prefactors = np.array([
self.xmin**3 \
* pow(self.xmax / self.xmin, -(bias + self.param_power) * i / self.size) \
/ np.pi \
/ pow(x0 * self.xmin, self.param_power) \
/ G \
for i in range(self.size)
])
temp_input = np.array(
[
input_y_fft[i] \
* _coefficients(2 * np.pi * i / G, bias, self.param_bessel, self.xmin * x0) \
for i in range(halfsize)
],
dtype="complex_"
)
temp_output_y = irfft(temp_input)
for i in range(self.size):
temp_output_y[i] *= prefactors[i]
self.x_fft = output_x
self.y_fft = self.size * temp_output_y
# in case users want to immediately assign the return values
return self.x_fft, self.y_fft