sh main.sh
1、构建变量
for col in [
"jd", "jd_c", "magnorm", "mage", "magnorm_m0", "magnorm_m1",
"magnorm_dmean", "magnorm_m0_dmean", "magnorm_m1_dmean"
]:
for nn in range(1, 60):
dvar.append(f"{col}_{nn}_d1_np.sum")
dvar.append(f"{col}_{nn}_d1_np.max")
dvar.append(f"{col}_{nn}_d1_np.mean")
dvar.append(f"{col}_{nn}_d1_np.min")
dvar.append(f"{col}_{nn}_d1_np.median")
dvar.append(f"{col}_{nn}_d1_np.max-np.min")
dvar.append(f"{col}_{nn}_d1_np.max-np.mean")
dvar.append(f"{col}_{nn}_d1_np.max-np.median")
dvar.append(f"{col}_{nn}_d1_np.mean-np.median")
dvar.append(f"{col}_{nn}_d1_np.std")
dvar.append(f"{col}_{nn}_d2_np.sum")
dvar.append(f"{col}_{nn}_d2_np.max")
dvar.append(f"{col}_{nn}_d2_np.mean")
dvar.append(f"{col}_{nn}_d2_np.min")
dvar.append(f"{col}_{nn}_d2_np.median")
dvar.append(f"{col}_{nn}_d2_np.max-np.min")
dvar.append(f"{col}_{nn}_d2_np.max-np.mean")
dvar.append(f"{col}_{nn}_d2_np.max-np.median")
dvar.append(f"{col}_{nn}_d2_np.mean-np.median")
dvar.append(f"{col}_{nn}_d2_np.std")
dvar.append(f"{col}_np.sum")
dvar.append(f"{col}_np.max")
dvar.append(f"{col}_np.mean")
dvar.append(f"{col}_np.min")
dvar.append(f"{col}_np.median")
dvar.append(f"{col}_np.max-np.min")
dvar.append(f"{col}_np.max-np.mean")
dvar.append(f"{col}_np.max-np.median")
dvar.append(f"{col}_np.mean-np.median")
dvar.append(f"{col}_np.std")
2、异常检测
引入孤立森林
3、聚类算法
引入from sklearn.cluster import MeanShift, estimate_bandwidth
和from sklearn.cluster import Birch
4、结果整合
整合检测类别1-5,取出其中小量级群体作为输出结果。
5、结果展示
Target 0 1 2
Cluster1
-1 16 0 1
1 36 13 3
Target 0 1 2
Cluster2
0 28 2 1
1 8 5 1
2 11 3 2
3 5 3 0
Target 0 1 2
Cluster3
0 14 1 1
1 11 1 0
2 4 2 0
3 4 3 1
4 7 2 1
5 4 0 1
6 2 1 0
7 0 2 0
8 3 0 0
9 2 0 0
10 0 1 0
11 1 0 0
Target 0 1 2
Cluster4
0 9 1 1
1 4 2 1
2 5 0 0
3 5 0 0
4 1 2 1
5 4 0 0
6 2 0 0
7 2 2 0
8 3 1 0
9 2 1 0
10 2 0 1
11 2 0 0
12 1 1 0
13 2 0 0
14 2 0 0
15 2 0 0
16 1 0 0
17 1 0 0
18 0 1 0
19 0 1 0
20 1 0 0
21 0 1 0
22 1 0 0
Target 0 1 2
Cluster5
0 2 1 0
1 2 0 0
2 2 0 0
3 1 2 1
4 2 0 0
5 2 0 0
6 1 1 0
7 2 0 0
8 2 0 0
9 1 0 0
10 0 1 1
11 2 0 0
12 5 1 1
13 3 0 0
14 0 1 0
15 2 0 0
16 1 1 0
17 1 0 0
18 2 0 0
19 1 0 0
20 1 0 0
21 2 0 0
22 1 0 0
23 1 0 0
24 0 1 0
25 0 1 0
26 2 2 0
27 1 0 0
28 0 1 0
29 0 0 1
30 1 0 0
31 1 0 0
32 1 0 0
33 1 0 0
34 1 0 0
35 1 0 0
36 1 0 0
37 1 0 0
38 1 0 0
39 1 0 0
###
Target 0 1 2
K
-1-0-0-0-1 2 0 0
-1-0-0-0-12 4 0 0
-1-0-0-0-35 1 0 0
-1-0-0-2-34 1 0 0
-1-0-1-3-11 1 0 0
-1-0-1-6-39 1 0 0
-1-0-4-8-13 1 0 0
-1-2-2-15-33 1 0 0
-1-2-3-17-23 1 0 0
-1-2-5-10-29 0 0 1