Property | Description |
---|---|
Model Image | infuseai/tensorflow2-prepackaged:v0.2.0 |
Input | ndarray or image |
Output | ndarray |
Repository | Link |
Model Format | Support |
---|---|
SavedModel | Yes |
HDF5 | Yes |
Model Format | Support |
---|---|
*.pb | No |
checkpoint | No |
SavedModel | No |
HDF5 | Yes |
SavedModel Format
We support TensorFlow2 SavedModel format. The model uri structure is just the output of tf.saved_model.save()
.
<model uri>
├── saved_model.pb
└── variables
├── variables.data-00000-of-00001
└── variables.index
HDF5 Format
We also support HDF5 format which is saved from Keras API in both TensorFlow 2
and TensorFlow 1
.
<model uri>
└── model.h5
- model.h5: The file is HDF5 format, and can be any file name with
.h5
file extension.
MLflow model
We also support MLflow model
in Tensorflow Flavor
and Keras Flavor
which are exported from MLflow autologging API.
<model uri>
├── MLmodel
└── <model files>
You can check the detailed code in the Github. Here, we brief the code as follows.
Load the model
def load(self):
model_uri = self.model_uri
# check model exported from mlflow.tensorflow.autolog()
if os.path.isfile(os.path.join(model_uri, 'MLmodel')):
if os.path.isdir(os.path.join(model_uri, 'data/model')):
print("Loading model from tensorflow.keras.Model.fit + mlflow.tensorflow.autolog()")
model_uri = os.path.join(model_uri, 'data/model')
elif os.path.isdir(os.path.join(model_uri, 'tfmodel')):
print("Loading model from tensorflow.estimator.Estimator.train + mlflow.tensorflow.autolog()")
model_uri = os.path.join(model_uri, 'tfmodel')
self.use_keras_api = 1
if tf.saved_model.contains_saved_model(model_uri):
self.model = tf.saved_model.load(model_uri).signatures["serving_default"]
if 'saved_model' not in str(type(self.model)):
self.use_keras_api = 0
else:
del self.model
if self.use_keras_api:
if not glob.glob(os.path.join(model_uri, '*.h5')):
self.model = tf.keras.models.load_model(model_uri)
else:
self.model = tf.keras.models.load_model(glob.glob(os.path.join(model_uri, '*.h5'))[0])
self.loaded = True
print(f"Use Keras API: {self.use_keras_api}")
print(f"Model input layer: {self.model.inputs[0]}")
Predict
def predict(self, X):
if not self.loaded:
self.load()
if self.use_keras_api:
return self.model.predict(X)
else:
output = self.model(tf.convert_to_tensor(X, self.model.inputs[0].dtype))
return output[next(iter(output))].numpy()
The example uses the Keras MNIST dataset, which is used in tensorflow tutorial.
Property | Description |
---|---|
Model Image | infuseai/tensorflow2-prepackaged:v0.2.0 |
Model URI |
|
Test Request
curl -X POST http://localhost:9000/api/v1.0/predictions \
-H 'Content-Type: application/json' \
-d '{ "data": {"ndarray": [[[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.32941176470588235, 0.7254901960784313, 0.6235294117647059, 0.592156862745098, 0.23529411764705882, 0.1411764705882353, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8705882352941177, 0.996078431372549, 0.996078431372549, 0.996078431372549, 0.996078431372549, 0.9450980392156862, 0.7764705882352941, 0.7764705882352941, 0.7764705882352941, 0.7764705882352941, 0.7764705882352941, 0.7764705882352941, 0.7764705882352941, 0.7764705882352941, 0.6666666666666666, 0.20392156862745098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.2627450980392157, 0.4470588235294118, 0.2823529411764706, 0.4470588235294118, 0.6392156862745098, 0.8901960784313725, 0.996078431372549, 0.8823529411764706, 0.996078431372549, 0.996078431372549, 0.996078431372549, 0.9803921568627451, 0.8980392156862745, 0.996078431372549, 0.996078431372549, 0.5490196078431373, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.06666666666666667, 0.25882352941176473, 0.054901960784313725, 0.2627450980392157, 0.2627450980392157, 0.2627450980392157, 0.23137254901960785, 0.08235294117647059, 0.9254901960784314, 0.996078431372549, 0.41568627450980394, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3254901960784314, 0.9921568627450981, 0.8196078431372549, 0.07058823529411765, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.08627450980392157, 0.9137254901960784, 1.0, 0.3254901960784314, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.5058823529411764, 0.996078431372549, 0.9333333333333333, 0.17254901960784313, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.23137254901960785, 0.9764705882352941, 0.996078431372549, 0.24313725490196078, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.5215686274509804, 0.996078431372549, 0.7333333333333333, 0.0196078431372549, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.03529411764705882, 0.803921568627451, 0.9725490196078431, 0.22745098039215686, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.49411764705882355, 0.996078431372549, 0.7137254901960784, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.29411764705882354, 0.984313725490196, 0.9411764705882353, 0.2235294117647059, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.07450980392156863, 0.8666666666666667, 0.996078431372549, 0.6509803921568628, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.011764705882352941, 0.796078431372549, 0.996078431372549, 0.8588235294117647, 0.13725490196078433, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.14901960784313725, 0.996078431372549, 0.996078431372549, 0.30196078431372547, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.12156862745098039, 0.8784313725490196, 0.996078431372549, 0.45098039215686275, 0.00392156862745098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.5215686274509804, 0.996078431372549, 0.996078431372549, 0.20392156862745098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.23921568627450981, 0.9490196078431372, 0.996078431372549, 0.996078431372549, 0.20392156862745098, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.4745098039215686, 0.996078431372549, 0.996078431372549, 0.8588235294117647, 0.1568627450980392, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.4745098039215686, 0.996078431372549, 0.8117647058823529, 0.07058823529411765, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]]] } }'
Test Result
{"data":{"names":[],"ndarray":[[2.2179587233495113e-07,1.2331390131237185e-08,2.5685869331937283e-05,0.0001267452462343499,3.6731301333858823e-10,8.802298339105619e-07,1.7313735514723483e-11,0.9998445510864258,5.112421490593988e-07,1.4923105027264683e-06]]},"meta":{"requestPath":{"model":"infuseai/tensorflow2-prepackaged:v0.2.0"}}}
Test Request
curl -F 'binData=@test_image.jpg' http://localhost:9000/api/v1.0/predictions
Test Result
{"data":{"names":[],"tensor":{"shape":[1,10],"values":[2.240761034499883e-07,1.2446706776358951e-08,2.6079718736582436e-05,0.00012795037764590234,3.6888223031716905e-10,8.873528258845909e-07,1.7562255469338872e-11,0.9998427629470825,5.136774916536524e-07,1.4995322317190585e-06]}},"meta":{"requestPath":{"model":"infuseai/tensorflow2-prepackaged:v0.2.0"}}}