-
Notifications
You must be signed in to change notification settings - Fork 272
/
base-nature.r
134 lines (111 loc) · 4 KB
/
base-nature.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
library(rstan)
library(data.table)
library(lubridate)
library(gdata)
library(dplyr)
library(tidyr)
library(EnvStats)
library(optparse)
library(stringr)
library(bayesplot)
library(matrixStats)
library(scales)
library(gridExtra)
library(ggpubr)
library(cowplot)
library(ggplot2)
library(abind)
source('nature/utils/process-covariates.r')
# Commandline options and parsing
parser <- OptionParser()
parser <- add_option(parser, c("-D", "--debug"), action="store_true",
help="Perform a debug run of the model")
parser <- add_option(parser, c("-F", "--full"), action="store_true",
help="Perform a full run of the model")
cmdoptions <- parse_args(parser, args = commandArgs(trailingOnly = TRUE), positional_arguments = TRUE)
# Default run parameters for the model
if(is.null(cmdoptions$options$debug)) {
DEBUG = Sys.getenv("DEBUG") == "TRUE"
} else {
DEBUG = cmdoptions$options$debug
}
# Sys.setenv(FULL = "TRUE")
if(is.null(cmdoptions$options$full)) {
FULL = Sys.getenv("FULL") == "TRUE"
} else {
FULL = cmdoptions$options$full
}
if(DEBUG && FULL) {
stop("Setting both debug and full run modes at once is invalid")
}
if(length(cmdoptions$args) == 0) {
StanModel = 'base-nature'
} else {
StanModel = cmdoptions$args[1]
}
print(sprintf("Running %s",StanModel))
if(DEBUG) {
print("Running in DEBUG mode")
} else if (FULL) {
print("Running in FULL mode")
}
cat(sprintf("Running:\nStanModel = %s\nDebug: %s\n",
StanModel,DEBUG))
# Read which countires to use
countries <- readRDS('nature/data/regions.rds')
# Read deaths data for regions
d <- readRDS('nature/data/COVID-19-up-to-date.rds')
# Read IFR and pop by country
ifr.by.country <- readRDS('nature/data/popt-ifr.rds')
# Read interventions
interventions <- readRDS('nature/data/interventions.rds')
forecast <- 0 # increase to get correct number of days to simulate
# Maximum number of days to simulate
N2 <- (max(d$DateRep) - min(d$DateRep) + 1 + forecast)[[1]]
processed_data <- process_covariates(countries = countries, interventions = interventions,
d = d , ifr.by.country = ifr.by.country, N2 = N2)
stan_data = processed_data$stan_data
dates = processed_data$dates
deaths_by_country = processed_data$deaths_by_country
reported_cases = processed_data$reported_cases
options(mc.cores = parallel::detectCores())
rstan_options(auto_write = TRUE)
m = stan_model(paste0('nature/stan-models/',StanModel,'.stan'))
if(DEBUG) {
fit = sampling(m,data=stan_data,iter=40,warmup=20,chains=2)
} else if (FULL) {
fit = sampling(m,data=stan_data,iter=1800,warmup=1000,chains=5,thin=1,control = list(adapt_delta = 0.99, max_treedepth = 20))
} else {
fit = sampling(m,data=stan_data,iter=600,warmup=300,chains=4,thin=1,control = list(adapt_delta = 0.95, max_treedepth = 10))
}
out = rstan::extract(fit)
prediction = out$prediction
estimated.deaths = out$E_deaths
estimated.deaths.cf = out$E_deaths0
JOBID = Sys.getenv("PBS_JOBID")
if(JOBID == "")
JOBID = as.character(abs(round(rnorm(1) * 1000000)))
print(sprintf("Jobid = %s",JOBID))
countries <- countries$Regions
save(fit,prediction,dates,reported_cases,deaths_by_country,countries,estimated.deaths,estimated.deaths.cf,stan_data, file=paste0('nature/results/',StanModel,'-',JOBID,'-stanfit.Rdata'))
library(bayesplot)
filename <- paste0(StanModel,'-',JOBID)
print('Generating mu, rt plots')
mu = (as.matrix(out$mu))
colnames(mu) = countries
g = (mcmc_intervals(mu,prob = .9))
ggsave(sprintf("nature/figures/%s-mu.png",filename),g,width=4,height=6)
tmp = lapply(1:length(countries), function(i) (out$Rt_adj[,stan_data$N[i],i]))
Rt_adj = do.call(cbind,tmp)
colnames(Rt_adj) = countries
g = (mcmc_intervals(Rt_adj,prob = .9))
ggsave(sprintf("nature/figures/%s-final-rt.png",filename),g,width=4,height=6)
print("Generate 3-panel plots")
source('nature/utils/plot-3-panel.r')
make_three_panel_plot(filename)
print('Covars plots')
source('nature/utils/covariate-size-effects.r')
plot_covars(filename)
print('Making table')
source('nature/utils/make-table.r')
make_table(filename)