-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference_cifar.py
129 lines (94 loc) · 4.78 KB
/
inference_cifar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import os
os.environ["CUDA_VISIBLE_DEVICES"]= '7'
import torch
import torch.nn as nn
from torch.autograd import Variable
import numpy as np
from functions import *
from models import *
import argparse
parser = argparse.ArgumentParser(description='Inference a cnn model on CIFAR-10')
parser.add_argument('--batch-size', default=50, type=int, metavar='N',
help='mini-batch size')
parser.add_argument('--finetune-model', default='./checkpoints/inference/resnet20_finetune_best_025.pth.tar', type=str,
help='finetune model checkpoint')
parser.add_argument('--model', default='resnet20', type=str,
help='choose the training mode')
parser.add_argument('--n', default='6', type=int,
help='scale factor for different resnet model(6,10,18,36)')
def main():
args = parser.parse_args()
training_models = {'resnet20':resnet20, 'resnet32':resnet32, 'resnet56':resnet56, 'resnet110':resnet110}
#finetune model with zeros
finetune_model = training_models[args.model](mode='finetune')
checkpoint = torch.load(args.finetune_model)
finetune_model.load_state_dict(checkpoint['state_dict'])
finetune_model = finetune_model.eval().cuda()
ones_list = [Variable(torch.from_numpy(np.array(list(range(16))))).cuda()]
for i, m in enumerate(finetune_model.modules()):
if isinstance(m, nn.Conv2d) and m.kernel_size == (3,3) and m.in_channels!=3:
out_channels = m.weight.data.shape[0]
output_norms = torch.norm(m.weight.data.view(out_channels,-1), p=1, dim=1)
output_ones = torch.gt(output_norms,0).nonzero()
ones_list.append(Variable(output_ones.squeeze()).cuda())
#squeeze-conv-expand model for inference
cfg_list =[]
cfgs =[[32]*args.n, [16]*args.n, [8]*args.n] #6,10,18,36
for cfg in cfgs :
cfg_list.extend(cfg)
inference_model = training_models[args.model](mode='inference', ones_list=ones_list, output_list = cfg_list)
inference_model = inference_model.eval().cuda()
#assign parameters
i=1
for [m0, m1] in zip(finetune_model.modules(), inference_model.modules()): #assign value for inference_model
if isinstance(m0, nn.Conv2d):
if m0.kernel_size == (1,1): #down-sampling convolution.
m1.weight.data = m0.weight.data.clone()
else:
if isinstance(m1, PrunedConv2d):
w = torch.index_select(m0.weight.data, 0, ones_list[i].data)
m1.weight.data = torch.index_select(w, 1, ones_list[i-1].data)
i = i+1
else: #first conv layer
m1.weight.data = m0.weight.data.clone()
elif isinstance(m0, nn.BatchNorm2d):
m1.weight.data = m0.weight.data.clone()
m1.bias.data = m0.bias.data.clone()
m1.running_mean = m0.running_mean.clone()
m1.running_var = m0.running_var.clone()
elif isinstance(m0, nn.Linear):
m1.weight.data = m0.weight.data.clone()
m1.bias.data = m0.bias.data.clone()
#theoretical compressing rate
full_model = training_models[args.model](mode='full').cuda()
inference_parameters = sum([param.nelement() for param in inference_model.parameters()])
full_parameters = sum([param.nelement() for param in full_model.parameters()])
print('parameters sparse rate:{}'.format(1-float(inference_parameters)/full_parameters))
#theoretical reduced flops rate
test_data = Variable(torch.randn(1,3,32,32)).cuda()
full_flops = calculate_flops(full_model, test_data)
inference_flops = calculate_flops(inference_model, test_data)
print('flops sparse rate:{}'.format(1-float(inference_flops) / full_flops))
testloader = cifar10_testdata(args.batch_size)
criterion = nn.CrossEntropyLoss()
validate(testloader, finetune_model, criterion)
validate(testloader, inference_model, criterion)
def validate(testloader, model, criterion):
disc_loss = 0.
disc_acc = 0.
testset =0
for data in testloader:
img, label = data
img = Variable(img).cuda()
label = Variable(label).cuda()
out = model(img)
loss = criterion(out, label)
disc_loss += loss.data[0] * label.size(0)
_, pred = torch.max(out, 1)
num_correct = (pred == label).sum()
disc_acc += num_correct.data[0]
testset += label.size(0)
print('Test Loss : {:.6f},Test Acc: {:.6f}'.format(disc_loss /testset, disc_acc /testset))
return disc_acc/testset, disc_loss/testset
if __name__ == '__main__':
main()