This repository has been archived by the owner on Dec 15, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmodel.py
executable file
·189 lines (157 loc) · 7.53 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
from __future__ import division
import torch
import shutil
import torch.nn as nn
import torch.nn.functional as F
"""
This is a uNet model with dilation convolution operation
"""
class Conv_transition(nn.Module):
'''
resnet block contains inception
'''
def __init__(self,kernel_size,in_channels,out_channels):
super(Conv_transition,self).__init__()
if not kernel_size:
kernel_size=[1,3,5]
paddings=[int(a/2) for a in kernel_size]
# self.Conv0=nn.Conv2d(in_channels,out_channels,3,stride=1,padding=1)
self.Conv1=nn.Conv2d(in_channels,out_channels,kernel_size[0],stride=1,padding=paddings[0])
self.Conv2=nn.Conv2d(in_channels,out_channels,kernel_size[1],stride=1,padding=paddings[1])
self.Conv3=nn.Conv2d(in_channels,out_channels,kernel_size[2],stride=1,padding=paddings[2])
self.Conv_f=nn.Conv2d(3*out_channels,out_channels,3,stride=1,padding=1)
self.bn=nn.BatchNorm2d(out_channels)
self.act=nn.PReLU()
def forward(self, x):
# x = self.Conv0(x)
x1 = self.act(self.Conv1(x))
x2 = self.act(self.Conv2(x))
x3 = self.act(self.Conv3(x))
x = torch.cat([x1, x2, x3], dim=1)
return self.act(self.bn(self.Conv_f(x)))
class Dense_layer(nn.Module):
"""
an two-layer
"""
def __init__(self,in_channels,growth_rate):
super(Dense_layer,self).__init__()
# self.bn0=nn.BatchNorm2d(in_channels)
self.Conv0=nn.Conv2d(in_channels,in_channels+growth_rate,3,stride=1,padding=1)
self.bn1=nn.BatchNorm2d(in_channels+growth_rate)
self.Conv1=nn.Conv2d(in_channels+growth_rate,growth_rate,kernel_size=3,stride=1,padding=1,bias=False)
self.bn2=nn.BatchNorm2d(in_channels+growth_rate)
self.Conv2=nn.Conv2d(in_channels+growth_rate,in_channels,kernel_size=3,stride=1,padding=1)
self.bn3=nn.BatchNorm2d(in_channels)
# self.Conv1=nn.Conv2d(in_channels+growth_rate,growth_rate,kernel_size=3,stride=1,padding=1,bias=False)
self.act=nn.PReLU()
def forward(self,x):
x1=self.act(self.bn1(self.Conv0(x)))
x1=self.act(self.bn2(torch.cat([self.Conv1(x1),x],dim=1)))
return self.act(self.bn3(self.Conv2(x1)))
class Fire_Down(nn.Module):
def __init__(self,kernel_size,in_channels,inner_channels,out_channels):
super(Fire_Down,self).__init__()
dilations=[1,3,5]
self.Conv1=nn.Conv2d(in_channels,inner_channels,kernel_size=kernel_size,stride=1,padding=dilations[0],dilation=dilations[0])
self.Conv4=nn.Conv2d(in_channels,inner_channels,kernel_size=kernel_size,stride=1,padding=dilations[1],dilation=dilations[1])
self.Conv8=nn.Conv2d(in_channels,inner_channels,kernel_size=kernel_size,stride=1,padding=dilations[2],dilation=dilations[2])
self.Conv_f3=nn.Conv2d(3*inner_channels,out_channels,kernel_size=kernel_size,stride=2,padding=1)
self.Conv_f1=nn.Conv2d(out_channels,out_channels,kernel_size=1,stride=1,padding=0)
self.bn1=nn.BatchNorm2d(out_channels)
self.act=nn.PReLU()
def forward(self,x):
x1 = self.act(self.Conv1(x))
x2 = self.act(self.Conv4(x))
x3 = self.act(self.Conv8(x))
x = torch.cat([x1, x2, x3], dim=1)
x = self.act(self.Conv_f3(x))
return self.act(self.bn1(self.Conv_f1(x)))
class Fire_Up(nn.Module):
def __init__(self,kernel_size,in_channels,inner_channels,out_channels,out_padding=(1,1)):
super(Fire_Up,self).__init__()
padds=int(kernel_size/2)
self.Conv1=nn.Conv2d(in_channels,inner_channels,kernel_size=3,stride=1,padding=1)
if not out_padding:
out_padding=(1,1)
# self.ConvT1=nn.ConvTranspose2d(inner_channels,out_channels,kernel_size=1,stride=2,padding=0,output_padding=out_padding)
self.ConvT4=nn.ConvTranspose2d(inner_channels,out_channels,kernel_size=kernel_size,stride=2,padding=padds,output_padding=out_padding)
# self.ConvT8=nn.ConvTranspose2d(inner_channels,out_channels,kernel_size=5,stride=2,padding=2,output_padding=out_padding)
self.Conv2=nn.Conv2d(out_channels,out_channels,3,padding=1,stride=1)
self.bn1=nn.BatchNorm2d(out_channels)
self.act=nn.PReLU()
def forward(self, x):
x = self.act(self.Conv1(x))
# x1=self.act(self.ConvT1(x))
x=self.act(self.ConvT4(x))
# x8=self.act(self.ConvT8(x))
# x=torch.cat([x1,x4],dim=1)
x=self.act(self.bn1(self.Conv2(x)))
return x
class uNet(nn.Module):
def __init__(self, num_classes):
super(uNet, self).__init__()
self.Conv0 = self._transition(3, 8) #1918
self.down1 = self._down_block(8, 16, 16) #959
self.down2 = self._down_block(16, 16, 32) #480
self.down3 = self._down_block(32, 32, 64) #240
self.down4 = self._down_block(64, 64, 96) #120
self.down5 = self._down_block(96, 96, 128) #60
self.tran0=self._transition(128,256)
self.db0=self._dense_block(256,32)
self.up1=self._up_block(256,96,96) #120
self.db1=self._dense_block(96,32)
self.conv1=nn.Conv2d(96*2,96,3,stride=1,padding=1)
self.bn1=nn.BatchNorm2d(96)
self.up2=self._up_block(96,64,64) #240
self.db2=self._dense_block(64,24)
self.conv2=nn.Conv2d(64*2,64,3,stride=1,padding=1)
self.bn2=nn.BatchNorm2d(64)
self.up3=self._up_block(64,32,32) #480
self.db3=self._dense_block(32,10)
self.conv3=nn.Conv2d(32*2,32,3,stride=1,padding=1)
self.bn3=nn.BatchNorm2d(32)
self.up4=self._up_block(32,16,16,output_padding=(1,0)) # 959
self.db4=self._dense_block(16,8)
self.conv4=nn.Conv2d(16*2,16,3,stride=1,padding=1)
self.bn4=nn.BatchNorm2d(16)
self.up5=self._up_block(16,16,16) #1918
self.db5=self._dense_block(16,4)
self.conv5=nn.Conv2d(16,num_classes,3,stride=1,padding=1)
self.clss=nn.LogSoftmax()
self.act=nn.PReLU()
def forward(self, x):
x1=self.Conv0(x)
down1=self.down1(x1)
down2=self.down2(down1)
down3=self.down3(down2)
down4=self.down4(down3)
down5=self.down5(down4)
down5=self.tran0(down5)
down5=self.db0(down5)
up1 = self.act(self.bn1(self.conv1(torch.cat([self.db1(self.up1(down5)), down4], dim=1))))
del down5, down4
up2 = self.act(self.bn2(self.conv2(torch.cat([self.db2(self.up2(up1)), down3], dim=1))))
del down3
up3 = self.act(self.bn3(self.conv3(torch.cat([self.db3(self.up3(up2)), down2], dim=1))))
del down2
up4 = self.act(self.bn4(self.conv4(torch.cat([self.db4(self.up4(up3)), down1], dim=1))))
del down1
up5=self.up5(up4)
# up5=self.conv5(up5)
return self.clss(self.conv5(up5))
def _transition(self, in_channels, out_channels):
layers = []
layers.append(Conv_transition([1, 3, 5], in_channels, out_channels))
return nn.Sequential(*layers)
def _down_block(self, in_channels, inner_channels, out_channels):
layers = []
layers.append(Fire_Down(3, in_channels, inner_channels, out_channels))
return nn.Sequential(*layers)
def _up_block(self, in_channels, inner_channels, out_channels,output_padding=(1,1)):
layers = []
layers.append(Fire_Up(3, in_channels, inner_channels, out_channels,output_padding))
return nn.Sequential(*layers)
def _dense_block(self,in_channels,growth_rate):
layers=[]
layers.append(Dense_layer(in_channels,growth_rate))
return nn.Sequential(*layers)