-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathprototypicalNet.py
182 lines (163 loc) · 6.29 KB
/
prototypicalNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import torch
import torchvision
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.autograd import Variable
from tqdm import trange
from time import sleep
import numpy as np
from sklearn.preprocessing import OneHotEncoder, LabelEncoder
class Net(nn.Module):
"""
Image2Vector CNN which takes image of dimension (28x28x3) and return column vector length 64
"""
def sub_block(self, in_channels, out_channels=64, kernel_size=3):
block = torch.nn.Sequential(
torch.nn.Conv2d(kernel_size=kernel_size, in_channels=in_channels,
out_channels=out_channels, padding=1),
torch.nn.BatchNorm2d(out_channels),
torch.nn.ReLU(),
torch.nn.MaxPool2d(kernel_size=2)
)
return block
def __init__(self):
super(Net, self).__init__()
self.convnet1 = self.sub_block(3)
self.convnet2 = self.sub_block(64)
self.convnet3 = self.sub_block(64)
self.convnet4 = self.sub_block(64)
def forward(self, x):
x = self.convnet1(x)
x = self.convnet2(x)
x = self.convnet3(x)
x = self.convnet4(x)
x = torch.flatten(x, start_dim=1)
return x
class PrototypicalNet(nn.Module):
def __init__(self, use_gpu=False):
super(PrototypicalNet, self).__init__()
self.f = Net()
self.gpu = use_gpu
if self.gpu:
self.f = self.f.cuda()
def forward(self, datax, datay, Ns, Nc, Nq, total_classes):
"""
Implementation of one episode in Prototypical Net
datax: Training images
datay: Corresponding labels of datax
Nc: Number of classes per episode
Ns: Number of support data per class
Nq: Number of query data per class
total_classes: Total classes in training set
"""
k = total_classes.shape[0]
K = np.random.choice(total_classes, Nc, replace=False)
Query_x = torch.Tensor()
if(self.gpu):
Query_x = Query_x.cuda()
Query_y = []
Query_y_count = []
centroid_per_class = {}
class_label = {}
label_encoding = 0
for cls in K:
S_cls, Q_cls = self.random_sample_cls(datax, datay, Ns, Nq, cls)
centroid_per_class[cls] = self.get_centroid(S_cls, Nc)
class_label[cls] = label_encoding
label_encoding += 1
# Joining all the query set together
Query_x = torch.cat((Query_x, Q_cls), 0)
Query_y += [cls]
Query_y_count += [Q_cls.shape[0]]
Query_y, Query_y_labels = self.get_query_y(
Query_y, Query_y_count, class_label)
Query_x = self.get_query_x(Query_x, centroid_per_class, Query_y_labels)
return Query_x, Query_y
def random_sample_cls(self, datax, datay, Ns, Nq, cls):
"""
Randomly samples Ns examples as support set and Nq as Query set
"""
data = datax[(datay == cls).nonzero()]
perm = torch.randperm(data.shape[0])
idx = perm[:Ns]
S_cls = data[idx]
idx = perm[Ns: Ns+Nq]
Q_cls = data[idx]
if self.gpu:
S_cls = S_cls.cuda()
Q_cls = Q_cls.cuda()
return S_cls, Q_cls
def get_centroid(self, S_cls, Nc):
"""
Returns a centroid vector of support set for a class
"""
return torch.sum(self.f(S_cls), 0).unsqueeze(1).transpose(0, 1) / Nc
def get_query_y(self, Qy, Qyc, class_label):
"""
Returns labeled representation of classes of Query set and a list of labels.
"""
labels = []
m = len(Qy)
for i in range(m):
labels += [Qy[i]] * Qyc[i]
labels = np.array(labels).reshape(len(labels), 1)
label_encoder = LabelEncoder()
Query_y = torch.Tensor(
label_encoder.fit_transform(labels).astype(int)).long()
if self.gpu:
Query_y = Query_y.cuda()
Query_y_labels = np.unique(labels)
return Query_y, Query_y_labels
def get_centroid_matrix(self, centroid_per_class, Query_y_labels):
"""
Returns the centroid matrix where each column is a centroid of a class.
"""
centroid_matrix = torch.Tensor()
if(self.gpu):
centroid_matrix = centroid_matrix.cuda()
for label in Query_y_labels:
centroid_matrix = torch.cat(
(centroid_matrix, centroid_per_class[label]))
if self.gpu:
centroid_matrix = centroid_matrix.cuda()
return centroid_matrix
def get_query_x(self, Query_x, centroid_per_class, Query_y_labels):
"""
Returns distance matrix from each Query image to each centroid.
"""
centroid_matrix = self.get_centroid_matrix(
centroid_per_class, Query_y_labels)
Query_x = self.f(Query_x)
m = Query_x.size(0)
n = centroid_matrix.size(0)
# The below expressions expand both the matrices such that they become compatible to each other in order to caclulate L2 distance.
# Expanding centroid matrix to "m".
centroid_matrix = centroid_matrix.expand(
m, centroid_matrix.size(0), centroid_matrix.size(1))
Query_matrix = Query_x.expand(n, Query_x.size(0), Query_x.size(
1)).transpose(0, 1) # Expanding Query matrix "n" times
Qx = torch.pairwise_distance(centroid_matrix.transpose(
1, 2), Query_matrix.transpose(1, 2))
return Qx
def train_step(protonet, datax, datay, Ns, Nc, Nq, optimizer):
optimizer.zero_grad()
Qx, Qy = protonet(datax, datay, Ns, Nc, Nq, np.unique(datay))
pred = torch.log_softmax(Qx, dim=-1)
loss = F.nll_loss(pred, Qy)
loss.backward()
optimizer.step()
acc = torch.mean((torch.argmax(pred, 1) == Qy).float())
return loss, acc
def test_step(protonet, datax, datay, Ns, Nc, Nq):
Qx, Qy = protonet(datax, datay, Ns, Nc, Nq, np.unique(datay))
pred = torch.log_softmax(Qx, dim=-1)
loss = F.nll_loss(pred, Qy)
acc = torch.mean((torch.argmax(pred, 1) == Qy).float())
return loss, acc
def load_weights(filename, protonet, use_gpu):
if use_gpu:
protonet.load_state_dict(torch.load(filename))
else:
protonet.load_state_dict(torch.load(filename), map_location='cpu')
return protonet