forked from uclacores/dual_path_network
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfrm_modulations_fast.py
245 lines (191 loc) · 7.12 KB
/
frm_modulations_fast.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import numpy as np
from numpy import sqrt,pi
from scipy.signal import filtfilt
from scipy.signal import convolve2d,fftconvolve
from scipy.signal import resample_poly
from scipy.signal import lfilter
import commpy
from commpy.filters import rrcosfilter,gaussianfilter
# import cv2
# from cv2 import filter2D
import matplotlib.pyplot as plt
import sys
import collections
from numba import jit
from functools import lru_cache
DEF_FFT_SIZE=256
from frm_modulations import *
def polar_to_rect(r,theta):
return r*(np.cos(theta)+1j*np.sin(theta))
def normalize_const(symbs):
return symbs/np.linalg.norm(symbs,2)*np.sqrt(symbs.size)
def psk_const(order, offset):
delta = 2*pi/order
indx = np.arange(0,order)
phase = indx*delta+offset
symb = polar_to_rect(1,phase)
return normalize_const(symb)
def ask_const(order, offset):
indx = np.arange(0,order) - (order-1)/2
mag = indx+offset
#symb = polar_to_rect(mag,0)
symb = mag + 1j*0
return normalize_const(symb)
def apsk_const(rings,offsets):
symb = np.array([])
for ring,offset in zip(rings,offsets):
r = np.sin(pi/rings[0])/np.sin(pi/ring)
delta = 2*pi/ring
indx = np.arange(0,ring)
phase = indx*delta+offset
symb=np.append(symb,polar_to_rect(r,phase))
return normalize_const(symb)
def qam_const(order):
small_side = np.floor(np.sqrt(order))
big_side = order/small_side
small_indx = np.arange(small_side)-(small_side-1)/2
big_indx = np.arange(big_side)-(big_side-1)/2
xx,yy = np.meshgrid(small_indx,big_indx)
symb = yy.flatten()+1j*xx.flatten()
return normalize_const(symb)
linear_mod_list = ['ook','ask4','ask8','bpsk','qpsk','psk8','psk16','psk32','apsk16','apsk32','apsk64','apsk128','qam16','qam32','qam64','qam128','qam256','qam512','qam1024']
cont_phase_mod_list = ['gmsk','cpfsk']
mod_list = linear_mod_list + cont_phase_mod_list
@lru_cache(maxsize=32)
def generate_pulse_shape_filter(sps,ebw=0.35, type='rrcos'):
nfilts = 32
ntaps = 11* nfilts * sps
(t,rrc_filter) = rrcosfilter(ntaps,ebw,1,sps)
# plt.plot(rrc_filter)
# plt.show()
return rrc_filter
# @profile
def linear_mod(x,mod,sps,timing_offset,timing_step,ebw=0.35,pulse_shape='rrcos'):
const = linear_mod_const[mod]
symbs = const[x]
if pulse_shape is not None:
pulse_shape_filter = generate_pulse_shape_filter(sps,ebw, pulse_shape)
skp=int(np.floor(pulse_shape_filter.size)/2)
strt = skp - int(sps) + timing_offset -1
max_dot_len = pulse_shape_filter.size//sps
pd_len = max_dot_len -1
symbs_pad = np.pad(symbs,(pd_len,pd_len),mode='constant')
# y = np.zeros(( (symbs.size*sps + pulse_shape_filter.size - sps - strt - skp)//timing_step ,),dtype='complex64')
# print(symbs.size)
# for i in range(strt//sps, symbs.size+pd_len - skp//sps):
# symbs_vec = symbs_pad[i:i+max_dot_len]
# for j in range(strt%sps,sps):
# pulse_vec = pulse_shape_filter[sps-1-j:None:sps]
# y[i*sps + j -strt] = np.dot(pulse_vec,symbs_vec)
# for k in range(y.size):
# i = (strt+k)//sps
# j = (k +strt)%sps
# symbs_vec = symbs_pad[i:i+max_dot_len]
# pulse_vec = pulse_shape_filter[sps-1-j:None:sps]
# y[k] = np.dot(pulse_vec,symbs_vec)
# for k in range(y.size):
# r = k*timing_step
# i = (strt+r)//sps
# j = (r +strt)%sps
# symbs_vec = symbs_pad[i:i+max_dot_len]
# pulse_vec = pulse_shape_filter[sps-1-j:None:sps]
# y[k] = np.dot(pulse_vec,symbs_vec)
y = my_interp(symbs.astype('complex64'),pulse_shape_filter.astype('complex64'),sps,timing_step,timing_offset,
skp,strt,max_dot_len,pd_len,symbs_pad.astype('complex64'))
else:
y = symbs
return y
@jit(nopython=True)
def my_interp(symbs,pulse_shape_filter,sps,timing_step,timing_offset,skp,strt,max_dot_len,pd_len,symbs_pad) :
y = np.zeros(( (symbs.size*sps + pulse_shape_filter.size - sps - strt - skp)//timing_step ,),dtype=np.complex64)
for k in range(y.size):
r = k*timing_step
i = (strt+r)//sps
j = (r +strt)%sps
symbs_vec = symbs_pad[i:i+max_dot_len]
pulse_vec = pulse_shape_filter[sps-1-j:None:sps]
y[k] = np.dot(pulse_vec,symbs_vec)
return y
# @profile
def modulate_symbols_fast(x,mod,sps,timing_offset,timing_step,ebw=0.35,pulse_shape='rrcos'):
if mod in linear_mod_list:
y = linear_mod(x,mod,sps,timing_offset,timing_step,ebw=ebw,pulse_shape=pulse_shape)
elif mod in cont_phase_mod_list:
if pulse_shape is not None:
y = cont_phase_mod(x,mod,sps,ebw=0.35,sensitivity = 1.0)
y =y[timing_offset::timing_step]
else:
order = cp_mod_params[mod]['order']
ask = ask_const(order,0.0)
y = ask[x]
return y
linear_mod_const ={
'ook':ask_const(2,0.5),
'ask4':ask_const(4,0.0),
'ask8':ask_const(8,0.0),
'bpsk':psk_const(2,0),
'qpsk':psk_const(4,pi/4),
'psk8':psk_const(8,0),
'psk16':psk_const(16,0),
'psk32':psk_const(32,0),
'apsk16':apsk_const(np.array([4,12]),np.array([pi/4,0])),
'apsk32':apsk_const(np.array([4,12,16]),np.array([0,pi/12,0])),
'apsk64':apsk_const(np.array([4,12,20,28]),np.array([0,pi/12,0,pi/28])),
'apsk128':apsk_const(np.array([8,16,24,36,44]),np.array([0,pi/16,0,pi/36])),
'qam16':qam_const(16),
'qam32':qam_const(32),
'qam64':qam_const(64),
'qam128':qam_const(128),
'qam256':qam_const(256),
'qam512':qam_const(512),
'qam1024':qam_const(1024)
}
cp_mod_params = {
'gmsk':{'order':2,'filter_type':'gaussian'},
'cpfsk':{'order':2,'filter_type':'rect'},
'4cpfsk':{'order':4,'filter_type':'rect'},
'gfsk':{'order':2,'filter_type':'gaussian'},
'4gfsk':{'order':4,'filter_type':'gaussian'}
}
def plot_iq(symb,show = True):
x = np.real(symb)
y = np.imag(symb)
plt.plot(x)
plt.plot(y)
if show:
plt.show()
if __name__ == '__main__':
def test1():
plot_const(psk_const(2,0))
# plot_constellation(ask_const(4,0))
# plot_constellation(qsk_const(4,0))
plot_const(apsk_const(np.array([4,12]),np.array([pi/4,0])))
def test2():
for mod in linear_mod_const.keys():
# plt.figure()
plot_const(linear_mod_const[mod],False)
plt.show()
def test3():
generate_pulse_shape_filter(8,ebw=0.35, type='rrcos')
def test4():
mod = 'qam1024'
order = 1024
n_symbols = 50
x = np.random.randint(0,order,n_symbols)
print(x)
sps = 8
y = linear_mod(x,mod,sps,ebw=0.35,pulse_shape='rrcos')
print(y.shape)
plot_iq(y)
def test5():
mod = '4gfsk'
order = cp_mod_params[mod]['order']
n_symbols = 10
# x = np.random.randint(0,order,n_symbols)
x = np.array([0,1,2,3]*10)
print(x)
sps = 8
y = cont_phase_mod(x,mod, sps,0.35,sensitivity=1.0)
print(y.shape)
plot_iq(y)
test4()