forked from uclacores/dual_path_network
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfrm_dataset_creator2.py
411 lines (255 loc) · 13.1 KB
/
frm_dataset_creator2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
#from frm_generate_data_np import *
import numpy as np
from numpy import pi,sqrt
model_folder="models/freq_2019_07_02_2/"
from frm_modulations import mod_list,cont_phase_mod_list,linear_mod_const
# import tensorflow as tf
import datetime
import pickle
import sys
import copy
from frm_dataset_creator import *
from numba import jit
from frm_modulations_fast import modulate_symbols_fast,modulate_symbols
# In[199]:
def func(my_dict):
# print(my_dict)
return generate_dataset_sig2(**my_dict)
def generate_dataset_sig2_parallel(n_samples, pkt_size,max_sps,mod_list,sps_rng,pulse_ebw_list,timing_offset_rng,fading_spread_rng,freq_err_rng,phase_err_rng,snr_rng, complex_fading = False,freq_in_hz = False,
seed = None, fname = None, version = 1,nthreads = 10 ): #1e4
args_in = locals()
args_in.pop('nthreads',None)
rand_step =374861
args_list = []
for i in range(nthreads):
args_list.append(copy.deepcopy(args_in))
if args_in['seed'] is not None:
for indx,args in enumerate(args_list):
args['seed'] = args_in['seed'] + indx * rand_step
get_tmp_name = lambda base, indx : "{}_{}".format(base, indx)
# if fname is not None:
# base_name = fname
# else:
# base_name = 'tmp/dataset'
# base_name = '/tmp/dataset{}'.format(np.random.randint(0,1000000))
for indx,args in enumerate(args_list):
args['fname'] = None #get_tmp_name(base_name,indx)
args['n_samples'] = args_in['n_samples']//nthreads
p = Pool(nthreads)
datasets = p.map(func, args_list)
# with open(get_tmp_name(base_name,0),'rb') as f:
# dataset = pickle.load(f)
dataset_out = datasets[0]
for i in range(1,nthreads):
dataset_i = datasets[i]
for k1 in dataset_out.keys():
if isinstance(dataset_out[k1],dict):
for k2 in dataset_out[k1].keys():
# print(k1,k2)
if k1!='args' and k1!='time':
dataset_out[k1][k2] = np.append(dataset_out[k1][k2],dataset_i[k1][k2],axis = 0)
dataset_out['args'] = args_in
dataset_out['time'] = str(datetime.datetime.now())
if fname is not None:
with open(fname,'wb') as f:
pickle.dump(dataset_out,f)
return dataset_out
def generate_dataset_sig2(n_samples, pkt_size,max_sps,mod_list,sps_rng,pulse_ebw_list,timing_offset_rng,fading_spread_rng,freq_err_rng,phase_err_rng,snr_rng,complex_fading = False, freq_in_hz = False,
seed = None, fname = None, version = 1):
args = locals()
if seed is not None:
np.random.seed(seed)
comb_v = np.zeros((n_samples,pkt_size,2))
carrier_v = np.zeros((n_samples,pkt_size,2))
fading_v = np.zeros((n_samples,pkt_size,2))
clean_v = np.zeros((n_samples,pkt_size,2))
timing_v = np.zeros((n_samples,pkt_size,2))
raw_v = np.zeros((n_samples,pkt_size,2))
mod_v = np.zeros((n_samples,len(mod_list)))
if not complex_fading:
coeff = np.zeros((n_samples,6))
else:
coeff = np.zeros((n_samples,6),dtype='complex')
mod_index = np.random.choice(len(mod_list),(n_samples,)).astype(np.int_)
mod_v[range(n_samples),mod_index] = 1
sps = np.random.uniform(sps_rng[0],sps_rng[1],(n_samples,))
pulse_ebw = np.random.choice(pulse_ebw_list,(n_samples,))
timing_offset = np.random.uniform(timing_offset_rng[0],timing_offset_rng[1],(n_samples,))
fading_spread = np.random.uniform(fading_spread_rng[0],fading_spread_rng[1],(n_samples,))
freq_err = np.random.uniform(freq_err_rng[0],freq_err_rng[1],(n_samples,))
phase_err = np.random.uniform(phase_err_rng[0],phase_err_rng[1],(n_samples,))
if np.array(snr_rng).size==2:
snr = np.random.uniform(snr_rng[0],snr_rng[1],(n_samples,))
else:
snr = np.random.choice(snr_rng,(n_samples,))
progress_step = 1000
a = datetime.datetime.now()
strt_time = copy.deepcopy(a)
for samp_indx in range(n_samples):
mod = mod_list[mod_index[samp_indx]]
op = create_sample_fast( mod = mod,pkt_len = pkt_size,sps=sps[samp_indx],pulse_ebw = pulse_ebw[samp_indx],
timing_offset = timing_offset[samp_indx],
fading_spread = fading_spread[samp_indx],
freq_err = freq_err[samp_indx], phase_err =phase_err[samp_indx],
snr = snr[samp_indx], max_sps = max_sps, complex_fading = complex_fading, freq_in_hz = freq_in_hz,
seed = None)
mod_v[:,0] = 1
comb_v[samp_indx] ,carrier_v[samp_indx],fading_v[samp_indx],clean_v[samp_indx],timing_v[samp_indx],raw_v[samp_indx],coeff[samp_indx] = op
if samp_indx%progress_step == 0 and samp_indx>0:
b = datetime.datetime.now()
diff_time = b-a
# the exact output you're looking for:
sys.stdout.write("\rGenerated {} out of {} ({:.1f}%), Elapsed {} , estimated {}".format(samp_indx,n_samples, float(samp_indx)/n_samples*100, b-strt_time , (n_samples-samp_indx)*diff_time /progress_step ))
sys.stdout.flush()
a = copy.deepcopy(b)
op ={'sig':{},'params':{},'data':{}}
op['sig']['comb'] = comb_v
op['sig']['timing_fading_carrier'] = carrier_v
op['sig']['timing_fading'] = fading_v
op['sig']['timing'] = clean_v
op['params']['mod'] = mod_index
op['params']['fading_spread'] = fading_spread
op['params']['fading_taps'] = coeff
op['params']['freq_off'] = freq_err
op['params']['phase_off'] = phase_err
op['params']['timing_off'] = timing_offset
op['params']['symb_rate'] = sps
op['data']['binary_marking'] = timing_v
op['params']['sps'] = sps
op['params']['pulse_ebw'] = pulse_ebw
op['sig']['timing_raw_unique'] = raw_v
op['params']['snr'] = snr
op['args'] = args
op['time'] = str(datetime.datetime.now())
op['version'] = version
if fname is not None:
with open(fname,'wb') as f:
pickle.dump(op,f)
return op
def create_sample( mod = 'bpsk',pkt_len = 128,sps=8,pulse_ebw = 0.35,
timing_offset = 0.5,
fading_spread = 1,
freq_err = 0.0001, phase_err = np.pi,
snr = 10, max_sps = 128, complex_fading = False, freq_in_hz = False,
seed = None):
samp_rate = 1
if seed is not None:
np.random.seed(seed)
if mod in cont_phase_mod_list:
order = 2
else: # Linear modulation
order = linear_mod_const[mod].size
n_symbols = int( (pkt_len)/(sps*0.5)) + 2
data_symbs=np.random.randint(0,order,n_symbols)
mag = timing_offset
timing_offset = calc_timing_offset(mag, max_sps)
timing_step = int(max_sps/sps)
mod_symbs_max_sps=modulate_symbols(data_symbs,mod,max_sps,ebw = pulse_ebw)
data_symbs_max_sps= np.repeat(data_symbs,max_sps)
t_max_sps= np.arange(0,1.0*max_sps*n_symbols/samp_rate,1.0/samp_rate)
transition_data_ideal = np.array(([1,]*max_sps + [0,]*max_sps) * int(n_symbols/2+1))
mod_symbs_timing_err = simulate_timing_error(mod_symbs_max_sps,timing_offset,timing_step, pkt_len)
data_symbs_timing_err = simulate_timing_error(data_symbs_max_sps,timing_offset,timing_step, pkt_len)
mod_raw_symbs_timing_err = modulate_symbols(data_symbs_timing_err,mod,sps = 1, ebw = None, pulse_shape = None)
t_timing_err = simulate_timing_error(t_max_sps,timing_offset,timing_step, pkt_len)
marking_b_timing = simulate_timing_error(transition_data_ideal,timing_offset,timing_step, pkt_len)
transition_data_timing = simulate_timing_error(transition_data_ideal,timing_offset,timing_step, pkt_len+1)
transition_data_timing = np.abs(np.diff(transition_data_timing)).astype('int')
mod_raw_unique_symbs_timing_err = mod_raw_symbs_timing_err*transition_data_timing
mod_raw_unique_symbs_timing_err[transition_data_timing==0]=np.nan+1j*np.nan
if not complex_fading:
coeff = generate_fading_taps(max_sps / timing_step, fading_spread)
mod_symbs_timing_fading = simulate_fading_channel(mod_symbs_timing_err, coeff)
else:
coeff=generate_complex_fading_taps(max_sps / timing_step, fading_spread)
mod_symbs_timing_fading = simulate_fading_channel_complex(mod_symbs_timing_err, coeff)
if not freq_in_hz:
t_freq = t_timing_err
else:
t_freq = np.arange(t_timing_err.size)
mod_symbs_timing_fading_freq_err = simulate_frequency_error(mod_symbs_timing_fading,t_freq,freq_err,phase_err)
carrier_timing_err = simulate_frequency_error(1.0,t_freq,freq_err,phase_err)
mod_symbs_timing_fading_freq_noise = add_noise(mod_symbs_timing_fading_freq_err,snr)
op = mod_symbs_timing_fading_freq_noise
comb = assign_iq2(mod_symbs_timing_fading_freq_noise)
carrier = assign_iq2(mod_symbs_timing_fading_freq_err)
fading = assign_iq2(mod_symbs_timing_fading)
clean = assign_iq2(mod_symbs_timing_err)#assign_iq2(mod_symbs_max_sps)#
timing = np.zeros((pkt_len,2))
timing[range(pkt_len),marking_b_timing] = 1
raw = assign_iq2(mod_raw_unique_symbs_timing_err)
return (comb ,carrier,fading,clean,timing,raw,coeff)
@jit(nopython=True)
def create_marking(max_sps,timing_step,timing_offset,pkt_len):
x = np.zeros(pkt_len+1,dtype=np.int_)
timing_offset = int(timing_offset)
indx = int(timing_offset)
state = True
prev_max_sps = indx% max_sps
for i in range(0,x.size):
x[i] = state
indx = indx +timing_step
cur_max_sps = indx%max_sps
if cur_max_sps<prev_max_sps:
state = not state
prev_max_sps = cur_max_sps
return x
def create_sample_fast( mod = 'bpsk',pkt_len = 128,sps=8,pulse_ebw = 0.35,
timing_offset = 0.5,
fading_spread = 1,
freq_err = 0.0001, phase_err = np.pi,
snr = 10, max_sps = 128,complex_fading = False, freq_in_hz = False,
seed = None):
samp_rate = 1
if seed is not None:
np.random.seed(seed)
if mod in cont_phase_mod_list:
order = 2
else: # Linear modulation
order = linear_mod_const[mod].size
n_symbols = int( (pkt_len)/(sps*0.5)) + 2
data_symbs=np.random.randint(0,order,n_symbols)
mag = timing_offset
timing_offset = calc_timing_offset(mag, max_sps)
timing_step = int(max_sps/sps)
mod_symbs_max_sps=modulate_symbols_fast(data_symbs,mod,max_sps,timing_offset,timing_step,ebw = pulse_ebw)
data_symbs_max_sps= np.repeat(data_symbs,max_sps)
t_max_sps= np.arange(0,1.0*max_sps*n_symbols/samp_rate,1.0/samp_rate)
mod_symbs_timing_err = mod_symbs_max_sps[:pkt_len]
data_symbs_timing_err = simulate_timing_error(data_symbs_max_sps,timing_offset,timing_step, pkt_len)
mod_raw_symbs_timing_err = modulate_symbols(data_symbs_timing_err,mod,sps = 1, ebw = None, pulse_shape = None)
t_timing_err = simulate_timing_error(t_max_sps,timing_offset,timing_step, pkt_len)
transition_data_timing = create_marking(max_sps,timing_step,timing_offset,pkt_len)
marking_b_timing = transition_data_timing[:-1]
transition_data_timing = np.abs(np.diff(transition_data_timing)).astype('int')
mod_raw_unique_symbs_timing_err = mod_raw_symbs_timing_err*transition_data_timing
mod_raw_unique_symbs_timing_err[transition_data_timing==0]=np.nan+1j*np.nan
if not complex_fading:
coeff = generate_fading_taps(max_sps / timing_step, fading_spread)
mod_symbs_timing_fading = simulate_fading_channel(mod_symbs_timing_err, coeff)
else:
coeff=generate_complex_fading_taps(max_sps / timing_step, fading_spread)
mod_symbs_timing_fading = simulate_fading_channel_complex(mod_symbs_timing_err, coeff)
if not freq_in_hz:
t_freq = t_timing_err
else:
t_freq = np.arange(t_timing_err.size)
mod_symbs_timing_fading_freq_err = simulate_frequency_error(mod_symbs_timing_fading,t_freq,freq_err,phase_err)
carrier_timing_err = simulate_frequency_error(1.0,t_freq,freq_err,phase_err)
mod_symbs_timing_fading_freq_noise = add_noise(mod_symbs_timing_fading_freq_err,snr)
op = mod_symbs_timing_fading_freq_noise
comb = assign_iq2(mod_symbs_timing_fading_freq_noise)
carrier = assign_iq2(mod_symbs_timing_fading_freq_err)
fading = assign_iq2(mod_symbs_timing_fading)
clean = assign_iq2(mod_symbs_timing_err)
timing = np.zeros((pkt_len,2))
timing[range(pkt_len),marking_b_timing.astype(np.int_)] = 1
raw = assign_iq2(mod_raw_unique_symbs_timing_err)
return (comb ,carrier,fading,clean,timing,raw,coeff)
def assign_iq2( complex_vec):
op_vec = np.zeros((complex_vec.shape[0],2))
op_vec[:,0] = np.real(complex_vec)
op_vec[:,1] = np.imag(complex_vec)
return op_vec
if __name__ == '__main__':
test_data_sig_parallel()