forked from uclacores/dual_path_network
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfrm_dataset_creator.py
712 lines (526 loc) · 25.5 KB
/
frm_dataset_creator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
#from frm_generate_data_np import *
import numpy as np
from numpy import pi,sqrt
model_folder="models/freq_2019_07_02_2/"
from frm_modulations import mod_list
# import tensorflow as tf
import datetime
import pickle
import sys
import copy
# In[199]:
def normalize(x):
x=x/( np.maximum( np.sqrt(np.mean(np.abs(x)**2)) ,1e-10 ) )
return x.astype('complex64')
# In[200]:
def add_noise(x,snr):
shp=np.shape(x)
ratio = np.power(10,snr/10,dtype='float32')
sig_pwr = np.mean(np.abs(x)**2)
# There is a bug. The noise is supposed to be multiplied by sqrt(ratio) and not ratio
y = x + sig_pwr/ratio / sqrt(2,dtype='float32') * (np.random.standard_normal(shp) + 1j*np.random.standard_normal(shp))
y = normalize(y)
return y.astype('complex64')
# In[201]:
def generate_data(n_symbols,order):
symbs=np.random.randint(0,order,n_symbols)
return symbs
# In[202]:
def simulate_timing_error(x,strt_offset,step, samples):
y = x[strt_offset:-1:step]
y = y[:samples]
return y
# In[203]:
def simulate_frequency_error(x,t,freq_err,phase_err):
cf = np.cos(2*np.pi*freq_err*t+phase_err) + 1j* np.sin(2*np.pi*freq_err*t+phase_err)
y = x*cf
return y
# In[204]:
def simulate_realistic_channel_det(x,snr,freq_err, phase_err, fading = True, timingErr = True):
y = x
if timingErr is not None:
y = simulate_timing_error(y)
y = simulate_frequency_error(y,freq_err,phase_err)
if fading is not None:
y = simulate_fading_channel(y)
if snr is not None:
y = add_noise(y,snr)
return y
# In[205]:
def assign_iq(op_vec,indx, complex_vec):
op_vec[indx,:,0] = np.real(complex_vec)
op_vec[indx,:,1] = np.imag(complex_vec)
# In[206]:
def generate_fading_taps( symbol_time, relative_delay_spread):
symbol_time = np.floor(symbol_time)
delay_spread = int(np.floor(symbol_time * relative_delay_spread))
coef2 = int(np.floor(symbol_time * relative_delay_spread/2))
coeff = np.zeros((6,))
coeff[3:] = 1.0
if delay_spread>0:
coeff[1] = coef2
coeff[2] = delay_spread
coeff[4] = 0.5 + 0.25*(2*np.random.random()-1)
coeff[5] = 0.1+ 0.05*(2*np.random.random()-1)
elif coef2>0:
coeff[1] = coef2
coeff[2] = coef2
t = 0.5 + 0.25*(2*np.random.random()-1)
coeff[4] = t
coeff[5] = t
n = np.sqrt(np.sum(np.square(coeff[3:])))
coeff[3:]=coeff[3:]/n
return coeff
def simulate_fading_channel(x,coeff):
coeff_vec = np.zeros((int(coeff[2])+1,))
coeff_vec[0] = coeff[3]
coeff_vec[ int(coeff[1]) ] = coeff[4]
coeff_vec[ int(coeff[2]) ] = coeff[5]
strt_slp = x[1]-x[0]
pad_len = int(coeff[2])
x = np.pad(x,(pad_len,0),'linear_ramp',end_values = -strt_slp*pad_len)
y = np.convolve(x,coeff_vec,mode='valid')
y = y[:x.size]
y = normalize(y)
return y
def simulate_fading_channel_complex(x,coeff):
coeff_vec = np.zeros((int(np.real(coeff[2]))+1,),dtype='complex')
coeff_vec[0] = coeff[3]
coeff_vec[ int(np.real(coeff[1])) ] = coeff[4]
coeff_vec[ int( np.real(coeff[2])) ] = coeff[5]
strt_slp = x[1]-x[0]
pad_len = int(np.real(coeff[2]))
x = np.pad(x,(pad_len,0),'linear_ramp',end_values = -strt_slp*pad_len)
y = np.convolve(x,coeff_vec,mode='valid')
y = y[:x.size]
y = normalize(y)
return y
def generate_complex_fading_taps( symbol_time, relative_delay_spread):
# Extended pedestrian A
# cekic_robust_2020
# Assuming symbol rate is 10Mhz, 10
symbol_time = np.floor(symbol_time)
delay_spread = int(np.floor(symbol_time * relative_delay_spread))
coef2 = int(np.floor(symbol_time * relative_delay_spread/2))
coeff = np.zeros((6,),dtype='complex')
coeff[3:] = 1.0
if delay_spread>0:
coeff[1] = coef2
coeff[2] = delay_spread
ph1 = np.random.randn()+1j*np.random.randn()
ph1 = ph1/np.abs(ph1)
ph2 = np.random.randn()+1j*np.random.randn()
ph2 = ph2/np.abs(ph2)
coeff[4] = np.random.rayleigh(0.5)*ph1
coeff[5] = np.random.rayleigh(0.1)*ph2
elif coef2>0:
coeff[1] = coef2
coeff[2] = coef2
ph1 = np.random.randn()+1j*np.random.randn()
ph1 = ph1/np.abs(ph1)
t = np.random.rayleigh(0.5)*ph1
coeff[4] = t
coeff[5] = t
n = np.sqrt(np.sum(np.square(coeff[3:])))
coeff[3:]=coeff[3:]/n
return coeff
# In[207]:
def calc_timing_offset(mag, max_sps):
return int(np.round(mag*max_sps))
def calc_timing_step(mag, sps, max_sps):
return int( np.round(max_sps/ (sps*(mag+1))) )
# In[240]:
# @profile
from multiprocessing import Pool
from functools import partial
def func(my_dict):
# print(my_dict)
return generate_dataset_sig(**my_dict)
def generate_dataset_sig_parallel(n_samples = 300, pkt_len=2**7,
snr_list=np.array([30]), # np.arange(-20,5,25)
mod_list = mod_list,
same_pkt=0,
sps_list=[8],
fading = {'type': 'rand', 'mag':[0.1,0.2,0.3]}, # {'type': 'const', 'mag':0.1},
pulse_shaping = None, #{'type':'list','mag':[0.15,0.25,0.35,0.45,0.55]}
carrier = {'freq':{'type': 'rand', 'mag' : 10e-6}, 'phase':{'type': 'rand', 'mag' : 0}},
timing = {'offset':{'type': 'rand', 'mag' : 1.0}, 'symb_rate':{'type': 'rand','mag':0.25} },
realizations_per_sig = 1,
outputs = ['clean','timing','carrier','noise','fading','interm','comb'],
seed = None, fname = None, max_sps = 64,
version = 1,
nthreads = 10
): #1e4
args_in = locals()
args_in.pop('nthreads',None)
rand_step =374861
args_list = []
for i in range(nthreads):
args_list.append(copy.deepcopy(args_in))
if args_in['seed'] is not None:
for indx,args in enumerate(args_list):
args['seed'] = args_in['seed'] + indx * rand_step
get_tmp_name = lambda base, indx : "{}_{}".format(base, indx)
# if fname is not None:
# base_name = fname
# else:
# base_name = 'tmp/dataset'
# base_name = '/tmp/dataset{}'.format(np.random.randint(0,1000000))
for indx,args in enumerate(args_list):
args['fname'] = None #get_tmp_name(base_name,indx)
args['n_samples'] = args_in['n_samples']//nthreads
p = Pool(nthreads)
datasets = p.map(func, args_list)
# with open(get_tmp_name(base_name,0),'rb') as f:
# dataset = pickle.load(f)
dataset_out = datasets[0]
for i in range(1,nthreads):
dataset_i = datasets[i]
for k1 in dataset_out.keys():
if isinstance(dataset_out[k1],dict):
for k2 in dataset_out[k1].keys():
# print(k1,k2)
if k1!='args' and k1!='time':
dataset_out[k1][k2] = np.append(dataset_out[k1][k2],dataset_i[k1][k2],axis = 0)
dataset_out['args'] = args_in
dataset_out['time'] = str(datetime.datetime.now())
if fname is not None:
with open(fname,'wb') as f:
pickle.dump(dataset_out,f)
return dataset_out
def generate_dataset_sig(n_samples = 300, pkt_len=2**7,
snr_list=np.array([30]), # np.arange(-20,5,25)
mod_list = mod_list,
same_pkt=0,
sps_list=[8],
fading = {'type': 'rand', 'mag':[0.1,0.2,0.3]}, # {'type': 'const', 'mag':0.1},
pulse_shaping = None, #{'type':'list','mag':[0.15,0.25,0.35,0.45,0.55]}
carrier = {'freq':{'type': 'rand', 'mag' : 10e-6}, 'phase':{'type': 'rand', 'mag' : 0}},
timing = {'offset':{'type': 'rand', 'mag' : 1.0}, 'symb_rate':{'type': 'rand','mag':0.25} },
realizations_per_sig = 1,
outputs = ['clean','timing','carrier','noise','fading','interm','comb'],
seed = None, fname = None, max_sps = 64,
version = 1
): #1e4
center_freq = 1e9
max_sps = 64
samp_rate = 1e6
center_freq = 1e9
args = locals()
bl_min = True if outputs is None else False
n_sigs = n_samples//realizations_per_sig
if seed is not None:
np.random.seed(seed%2**32)
if not bl_min:
bl_op_clean = True if 'clean' in outputs else False
bl_op_timing = True if 'timing' in outputs else False
bl_op_carrier = True if 'carrier' in outputs else False
bl_op_noise = True if 'noise' in outputs else False
bl_op_fading = True if 'fading' in outputs else False
bl_op_interm = True if 'interm' in outputs else False
bl_op_comb = True if 'comb' in outputs else False
data_symbs_ideal_v = np.zeros((n_samples,pkt_len))
if bl_op_clean:
mod_symbs_v = np.zeros((n_samples,pkt_len,2))
mod_raw_symbs_v = np.zeros((n_samples,pkt_len,2))
if bl_op_timing:
mod_symbs_timing_v = np.zeros((n_samples,pkt_len,2))
mod_raw_symbs_timing_v = np.zeros((n_samples,pkt_len,2))
mod_raw_unique_symbs_timing_v = np.zeros((n_samples,pkt_len,2))
# mod_raw_unique_diff_symbs_timing_v = np.zeros((n_samples,pkt_len,2))
if bl_op_carrier:
mod_symbs_carrier_v = np.zeros((n_samples,pkt_len,2))
if bl_op_noise:
mod_symbs_noise_v = np.zeros((n_samples,pkt_len,2))
if bl_op_comb:
mod_symbs_comb_v = np.zeros((n_samples,pkt_len,2))
if bl_op_interm:
mod_symbs_timing_fading_v = np.zeros((n_samples,pkt_len,2))
mod_symbs_timing_fading_freq_v = np.zeros((n_samples,pkt_len,2))
carrier_timing_v = np.zeros((n_samples,pkt_len,2))
if bl_op_fading:
mod_symbs_fading_v = np.zeros((n_samples,pkt_len,2))
else:
mod_symbs_comb_v = np.zeros((n_samples,pkt_len,2))
bl_op_clean = False
bl_op_timing = False
bl_op_carrier = False
bl_op_noise = False
bl_op_fading = False
bl_op_interm = False
bl_op_comb = True
modulation_v = np.zeros((n_samples,),dtype='int')
bl_apply_carrier = False if carrier is None else True
bl_apply_snr = False if snr_list is None else True
bl_apply_timing = False if timing is None else True
bl_apply_fading = False if fading is None else True
bl_variable_pulse_shaping = False if pulse_shaping is None else True
if bl_apply_carrier:
freq_offset_v = np.zeros((n_samples,))
phase_offset_v = np.zeros((n_samples,))
carrier_v = np.zeros((n_samples,pkt_len,2))
bl_calc_freq_loop = True if carrier['freq']['type'] == 'rand' else False
bl_calc_phase_loop = True if carrier['phase']['type'] == 'rand' else False
if not bl_calc_freq_loop:
freq_err=carrier['freq']['mag']*center_freq
if not bl_calc_phase_loop:
phase_err=carrier['phase']['mag']
if bl_apply_snr:
snr_v = np.zeros((n_samples,))
bl_calc_snr_loop = True if snr_list.size> 1 else False
if not bl_calc_snr_loop:
snr=snr_list[0]
bl_calc_mod_loop = True if len(mod_list)> 1 else False
if not bl_calc_mod_loop:
mod = mod_list[0]
bl_calc_sps_loop = True if len(sps_list)> 1 else False
if not bl_calc_sps_loop:
sps = sps_list[0]
sps_v = np.zeros((n_samples,))
if bl_apply_timing:
data_symbs_timing_v = np.zeros((n_samples,pkt_len))
transition_data_timing_v = np.zeros((n_samples,pkt_len))
if version==1:
marking_timing_v = np.zeros((n_samples,pkt_len))
else:
marking_b_timing_v = np.zeros((n_samples,pkt_len))
timing_offset_v = np.zeros((n_samples,))
symbol_rate_err_v = np.zeros((n_samples,))
bl_calc_timing_rate_loop = True if timing['offset']['type'] == 'rand' else False
bl_calc_symb_rate_loop = True if timing['symb_rate']['type'] == 'rand' or bl_calc_sps_loop else False
if not bl_calc_timing_rate_loop:
timing_offset = calc_timing_offset(timing['offset']['mag'], max_sps)
if not bl_calc_symb_rate_loop:
timing_step = calc_timing_step(timing['symb_rate']['mag'], sps, max_sps)
if bl_apply_fading:
fading_spread_v = np.zeros((n_samples,))
fading_taps_v = np.zeros((n_samples,6))
if fading['type'] == 'const':
bl_calc_fading_loop = False
fading_spread = fading['mag']
elif fading['type'] == 'rand':
bl_calc_fading_loop = True
fading_spread_list = fading['mag']
if not bl_variable_pulse_shaping:
pulse_ebw = 0.35
else:
if pulse_shaping['type']=='list':
pulse_ebw_list = pulse_shaping['mag']
else:
raise NotImplemented('Only list of pulse shaping is implemented')
pulse_ebw_v = np.zeros((n_samples,))
strt_time = datetime.datetime.now()
a = strt_time
progress_step = 1000
samp_indx = 0
for sig_indx in range(n_sigs):
if bl_calc_mod_loop:
mod = np.random.choice(mod_list)
if mod in cont_phase_mod_list:
order = 2
else: # Linear modulation
order = linear_mod_const[mod].size
if not bl_calc_sps_loop:
sps = np.random.choice(sps_list)
n_symbols = int( (pkt_len)/(sps*0.5)) + 2
if same_pkt == 0:
data_symbs=np.random.randint(0,order,n_symbols)
elif same_pkt == 1:
st = np.random.get_state()
np.random.seed(5)
data_symbs=np.random.randint(0,order,n_symbols)
np.random.set_state(st)
if bl_variable_pulse_shaping:
pulse_ebw = np.random.choice(pulse_ebw_list)
if not bl_min:
pulse_ebw_v[samp_indx] = pulse_ebw
mod_symbs_max_sps=modulate_symbols(data_symbs,mod,max_sps,ebw = pulse_ebw)
data_symbs_max_sps= np.repeat(data_symbs,max_sps)
t_max_sps= np.arange(0,1.0*max_sps*n_symbols/samp_rate,1.0/samp_rate)
timing_offset_ideal = 0
timing_step_ideal = int(max_sps / sps)
mod_symbs_ideal = simulate_timing_error(mod_symbs_max_sps,timing_offset_ideal,timing_step_ideal, pkt_len)
data_symbs_ideal = simulate_timing_error(data_symbs_max_sps,timing_offset_ideal,timing_step_ideal, pkt_len)
mod_raw_symbs_ideal = modulate_symbols(data_symbs_ideal,mod,sps = 1, ebw = None, pulse_shape = None)
transition_data_ideal = np.array(([1,]*max_sps + [0,]*max_sps) * int(n_symbols/2+1))
t_ideal = simulate_timing_error(t_max_sps,timing_offset_ideal,timing_step_ideal, pkt_len)
for realz_indx in range(realizations_per_sig):
if samp_indx%progress_step == 0:
b = datetime.datetime.now()
diff_time = b-a
# the exact output you're looking for:
sys.stdout.write("\rGenerated {} out of {} ({:.1f}%), Elapsed {} , estimated {}".format(samp_indx,n_samples, float(samp_indx)/n_samples*100, b-strt_time , (n_samples-samp_indx)*diff_time /progress_step ))
sys.stdout.flush()
a = copy.deepcopy(b)
modulation_v[samp_indx] = mod_list.index(mod)
if not bl_min:
sps_v[samp_indx] = sps
if bl_apply_timing:
if bl_calc_timing_rate_loop:
mag = np.random.random()*timing['offset']['mag']
timing_offset = calc_timing_offset(mag, max_sps)
if bl_calc_symb_rate_loop:
mag = (np.random.random()-0.5)*2*timing['symb_rate']['mag']
timing_step = calc_timing_step(mag, sps, max_sps)
timing_offset_v[samp_indx] = timing_offset
symbol_rate_err_v[samp_indx] = timing_step
mod_symbs_timing_err = simulate_timing_error(mod_symbs_max_sps,timing_offset,timing_step, pkt_len)
data_symbs_timing_err = simulate_timing_error(data_symbs_max_sps,timing_offset,timing_step, pkt_len)
mod_raw_symbs_timing_err = modulate_symbols(data_symbs_timing_err,mod,sps = 1, ebw = None, pulse_shape = None)
t_timing_err = simulate_timing_error(t_max_sps,timing_offset,timing_step, pkt_len)
marking_timing = np.repeat(np.arange(n_symbols),max_sps)
marking_timing = simulate_timing_error(marking_timing,timing_offset,timing_step, pkt_len)
# mod_raw_unique_diff_symbs_timing_err = np.diff(mod_raw_unique_symbs_timing_err,axis = 0)
# mod_raw_unique_diff_symbs_timing_err = np.hstack((mod_raw_unique_diff_symbs_timing_err,np.zeros((pkt_len - mod_raw_unique_diff_symbs_timing_err.shape[0],))))
# transition_data_timing = simulate_timing_error(transition_data_ideal,timing_offset,timing_step, pkt_len)
transition_data_timing = simulate_timing_error(transition_data_ideal,timing_offset,timing_step, pkt_len+1)
if version > 1:
marking_b_timing = simulate_timing_error(transition_data_ideal,timing_offset,timing_step, pkt_len)
transition_data_timing = np.abs(np.diff(transition_data_timing)).astype('int')
if version==2:
unique_marking = np.unique(marking_timing,return_index = True)[1]
mod_raw_unique_symbs_timing_err = mod_raw_symbs_timing_err[unique_marking]
mod_raw_unique_symbs_timing_err = np.hstack((mod_raw_unique_symbs_timing_err,np.zeros((pkt_len - mod_raw_unique_symbs_timing_err.shape[0],))))
elif version==3:
mod_raw_unique_symbs_timing_err = mod_raw_symbs_timing_err*transition_data_timing
if not bl_min:
data_symbs_timing_v[samp_indx,:] = data_symbs_timing_err
transition_data_timing_v[samp_indx,:] = transition_data_timing
if version ==1:
marking_timing_v[samp_indx,:] = marking_timing
else:
marking_b_timing_v[samp_indx,:] = marking_b_timing
timing_offset_v[samp_indx] = timing_offset_ideal - timing_offset
symbol_rate_err_v[samp_indx] = max_sps / timing_step
else:
mod_symbs_timing_err = mod_symbs_ideal
t_timing_err = t_ideal
if bl_apply_fading:
if bl_calc_fading_loop:
fading_spread = np.random.choice(fading_spread_list)
coeff = generate_fading_taps(max_sps / timing_step, fading_spread)
mod_symbs_timing_fading = simulate_fading_channel(mod_symbs_timing_err, coeff)
if not bl_min:
fading_taps_v[samp_indx,:] = coeff
if bl_op_fading:
mod_symbs_fading = simulate_fading_channel(mod_symbs_ideal, max_sps / timing_step, fading_spread)
fading_spread_v[samp_indx] = fading_spread
else:
mod_symbs_timing_fading = mod_symbs_timing_err
if bl_apply_carrier:
if bl_calc_freq_loop:
freq_err=np.random.rand()*carrier['freq']['mag']*center_freq
if bl_calc_phase_loop:
phase_err=np.random.rand()*carrier['phase']['mag']
if not bl_min:
freq_offset_v[samp_indx] = freq_err
phase_offset_v[samp_indx] = phase_err
mod_symbs_timing_fading_freq_err = simulate_frequency_error(mod_symbs_timing_fading,t_timing_err,freq_err,phase_err)
carrier_timing_err = simulate_frequency_error(1.0,t_timing_err,freq_err,phase_err)
if bl_op_carrier:
mod_symbs_carrier_err = simulate_frequency_error(mod_symbs_ideal,t_ideal,freq_err,phase_err)
carrier_err = simulate_frequency_error(1.0,t_ideal,freq_err,phase_err)
else:
mod_symbs_timing_fading_freq_err = mod_symbs_timing_fading
if bl_apply_snr:
if bl_calc_snr_loop:
snr = np.random.choice(snr_list)
if not bl_min:
snr_v[samp_indx] = snr
mod_symbs_timing_fading_freq_noise = add_noise(mod_symbs_timing_fading_freq_err,snr)
if bl_op_noise:
mod_symbs_noise = add_noise(mod_symbs_ideal,snr)
else:
mod_symbs_timing_fading_freq_noise = mod_symbs_timing_fading_freq_err
if not bl_min:
data_symbs_ideal_v[samp_indx,:] = data_symbs_ideal
if bl_op_clean:
assign_iq(mod_symbs_v,samp_indx,mod_symbs_ideal)
assign_iq(mod_raw_symbs_v,samp_indx,mod_raw_symbs_ideal)
if bl_op_timing:
assign_iq(mod_symbs_timing_v,samp_indx,mod_symbs_timing_err)
assign_iq(mod_raw_symbs_timing_v,samp_indx,mod_raw_symbs_timing_err)
assign_iq(mod_raw_unique_symbs_timing_v,samp_indx,mod_raw_unique_symbs_timing_err)
# assign_iq(mod_raw_unique_diff_symbs_timing_v,samp_indx,mod_raw_unique_diff_symbs_timing_err)
if bl_op_carrier:
assign_iq(mod_symbs_carrier_v ,samp_indx,mod_symbs_carrier_err)
assign_iq(carrier_v,samp_indx,carrier_err)
if bl_op_noise:
assign_iq(mod_symbs_noise_v,samp_indx, mod_symbs_noise)
if bl_op_fading:
assign_iq(mod_symbs_fading_v,samp_indx, mod_symbs_fading)
if bl_op_comb:
assign_iq(mod_symbs_comb_v,samp_indx,mod_symbs_timing_fading_freq_noise)
if bl_op_interm:
assign_iq(mod_symbs_timing_fading_v,samp_indx,mod_symbs_timing_fading)
assign_iq(carrier_timing_v,samp_indx,carrier_timing_err)
assign_iq(mod_symbs_timing_fading_freq_v,samp_indx,mod_symbs_timing_fading_freq_err)
samp_indx = samp_indx + 1
op ={'sig':{},'params':{},'data':{}}
if bl_op_clean:
op['sig']['clean'] = mod_symbs_v
op['sig']['raw'] = mod_raw_symbs_v
if bl_op_timing:
op['sig']['timing'] = mod_symbs_timing_v
if version==1:
op['sig']['timing_raw'] = mod_raw_symbs_timing_v
op['sig']['timing_raw_unique'] = mod_raw_unique_symbs_timing_v
# op['sig']['timing_raw_unique_diff'] = mod_raw_unique_diff_symbs_timing_v
if bl_op_carrier:
op['sig']['carrier'] = mod_symbs_carrier_v
op['params']['carrier'] = carrier_v
if bl_op_noise:
op['sig']['noise'] = mod_symbs_noise_v
if bl_op_fading:
op['sig']['fading'] = mod_symbs_fading_v
if bl_op_comb:
op['sig']['comb'] = mod_symbs_comb_v
if bl_op_interm:
op['sig']['timing_fading_carrier'] = mod_symbs_timing_fading_freq_v
if version==1:
op['params']['carrier_timing'] = carrier_timing_v
if bl_apply_timing:
op['sig']['timing_fading'] = mod_symbs_timing_fading_v
op['params']['mod'] = modulation_v
if not bl_min:
if bl_apply_fading:
op['params']['fading_spread'] = fading_spread_v
op['params']['fading_taps'] = fading_taps_v
if bl_apply_carrier:
op['params']['freq_off'] = freq_offset_v
op['params']['phase_off'] = phase_offset_v
if bl_apply_timing:
op['params']['timing_off'] = timing_offset_v
op['params']['symb_rate'] = symbol_rate_err_v
op['data']['timing'] = data_symbs_timing_v
op['data']['transition'] = marking_b_timing_v
if version==1:
op['data']['marking'] = marking_timing_v
else:
op['data']['binary_marking'] = marking_b_timing_v
op['params']['sps'] = sps_v
op['params']['pulse_ebw'] = pulse_ebw_v
if bl_apply_snr:
op['params']['snr'] = snr_v
if version > 1 and bl_op_clean:
op['data']['ideal'] = data_symbs_ideal_v
op['args'] = args
op['time'] = str(datetime.datetime.now())
op['version'] = version
if fname is not None:
with open(fname,'wb') as f:
pickle.dump(op,f)
return op
def test1():
dataset = generate_dataset_sig(n_samples = 1000 , snr_list=None,sps_list=[8],
timing = None, carrier = None, fading = None, outputs = {'clean'},
seed = 0)
def test_data_sig_parallel():
dataset = generate_dataset_sig_parallel(n_samples = 1000 , snr_list=np.array([0]),sps_list=[8],
timing = None, carrier = None, fading = None, outputs = {'clean','noise'},
seed = 0,fname = 'tmp/test_parallel')
# print(dataset)
# print(dataset['sig']['clean'])
print(dataset['sig']['clean'].shape)
if __name__ == '__main__':
test_data_sig_parallel()