-
Notifications
You must be signed in to change notification settings - Fork 1
/
explore_fp_data_c.Rmd
262 lines (210 loc) · 8 KB
/
explore_fp_data_c.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
Flaveria bidentis eXpress data exploration
========================================================
Load the data
```{r}
library(ggplot2)
library(gplots)
library(reshape2)
setwd('/home/cmb211/flaveria/Fp/Fp_2/')
data_tpm <- read.csv('Fp_express.tpm', sep="\t", head=T)
data_counts <- read.csv('Fp_express.eff_count', sep="\t", head=T)
```
## TPM
Correlation matrix
```{r tpm_correlation, fig.width=12, fig.height=12}
tpms <- data_tpm[,3:20]
names(tpms) <- gsub(names(tpms), pattern="([0-9])\\.([0-9])", replacement="\\2.\\1")
rownames(tpms) <- data_tpm$contig
c <- melt(cor(tpms))
ggplot(data=c, aes_string(x=names(c)[1], y=names(c)[2], fill="value")) +
geom_tile() +
ggtitle("TPM Correlation Matrix") +
geom_text(aes(label = round(value, 2))) +
xlab('') +
ylab('')
ggsave("Fp_correlation.tpm.pdf")
```
Expression Density Plot
```{r tpm_density, fig.width=12, fig.height=12}
tpms_melt <- melt(tpms)
tpms_melt$value[tpms_melt$value < 0.01] <- 0
tpms_melt$stage <- gsub(tpms_melt$variable, pattern="\\.[0-9]", replacement="")
ggplot(tpms_melt, aes(x=log(value), group=stage, colour=stage)) +
geom_density()
ggsave("Fp_density.tpm.pdf")
```
Heatmap on TPMs
```{r heatmap, fig.width=12, fig.height=12}
plotheatmap <- function(data) {
dists <- dist(t(as.matrix(data)))
mat <- as.matrix(dists)
heatmap.2(mat, trace="none")
}
#pdf("Fp_heatmap.pdf")
plotheatmap(tpms)
#dev.off()
```
## Effective counts
```{r eff_corr, fig.width=12, fig.height=12}
library(EBSeq)
library(DESeq)
# Remove any rows containing all-zeros
remove_zero_rows <- function(df) {
df[apply(df, 1, function(x) !all(x==0)),]
}
normalise_counts <- function(counts, normfactors) {
round(t(t(counts) / normfactors))
}
counts <- data_counts[,3:20]
colnames(counts) <- gsub(colnames(counts), pattern="([0-9]).([0-9])", replacement="\\2.\\1")
rownames(counts) <- data_counts$contig
counts <- remove_zero_rows(round(counts))
c <- melt(cor(data))
p <- ggplot(data=c, aes_string(x=names(c)[1], y=names(c)[2], fill="value")) +
geom_tile() +
ggtitle("Effective Count Correlation matrix") +
geom_text(aes(label = round(value, 2))) +
xlab('') +
ylab('')
ggsave("Fp_correlation.eff.pdf")
```
Log distributions of Effective Counts
```{r log_count, fig.width=12, fig.height=12}
cf <- as.data.frame(counts)
cf$contig <- rownames(counts)
counts_melt <- melt(cf, id='contig')
ggplot(counts_melt, aes(x=log(value), colour=variable)) +
geom_density() +
ggtitle("Effective Count Log Density")
ggsave("Fp_density.eff.pdf")
```
Box plot with outliers
```{r boxplot1, fig.width=12, fig.height=12}
ggplot(counts_melt, aes(x=variable, y=value, colour=variable)) +
geom_boxplot() +
ggtitle("Boxplots")
ggsave("Fp_boxplot.eff.pdf")
```
Plot distribution of counts over 50,000
```{r boxplot2, fig.width=12, fig.height=12}
counts_50k <- counts_melt[counts_melt$value > 50000,]
ggplot(counts_50k, aes(x=variable, y=value, colour=variable)) +
geom_boxplot() +
ggtitle("Boxplot of Outliers")
ggsave("Fp_boxplot50k.eff.pdf")
```
There are some high counts (>2e+05) distorting the distributions - let's remove those rows for the purposes of checking how good replication is for the majority of genes
```{r fig.width=12, fig.height=12}
high_contigs <- unique(counts_50k[which(counts_50k$value > 2e+05),]$contig)
fixed_tpm <- data_tpm[-which(data_tpm$contig %in% high_contigs),] # remove highly expressed contigs
names(fixed_tpm) <- gsub(names(fixed_tpm), pattern="([0-9]).([0-9])", replacement="\\2.\\1")
tpms <- fixed_tpm[,3:20]
rownames(tpms) <- fixed_tpm$contig
c <- melt(cor(tpms))
ggplot(data=c, aes_string(x=names(c)[1], y=names(c)[2], fill="value")) +
geom_tile() +
ggtitle("TPM Correlation Matrix with high expression removed") +
geom_text(aes(label = round(value, 2))) +
xlab('') +
ylab('')
ggsave("Fp_correlation_no_outliers.tpm.pdf")
```
We can also use a correlation metric less sensitive to outliers
```{r fig.width=12, fig.height=12}
c <- cor(counts, method="spearman")
c <- melt(c)
c <- c[-which(c$value==1),] # remove 1s so the gradient is better
ggplot(data=c, aes_string(x=names(c)[1], y=names(c)[2], fill="value")) +
geom_tile() +
geom_text(aes(label = round(value, 2))) +
xlab('') +
ylab('') +
ggtitle("Effective count Spearman (ranked) correlation matrix")
ggsave("Fp_spearman.eff.pdf")
```
Just re-checking the distributions with outliers removed and aggregated by sample
```{r fig.width=12, fig.height=12}
tpms_melt <- melt(tpms)
tpms_melt$value[tpms_melt$value < 0.01] <- 0
tpms_melt$stage <- gsub(tpms_melt$variable, pattern="\\.[0-9]", replacement="")
ggplot(tpms_melt, aes(x=log(value), group=stage, colour=stage)) +
geom_density() +
ggtitle("TPM Density plot by section")
ggsave("Fp_density_no_outliers.tpm.pdf")
```
and not aggregated...
```{r fig.width=12, fig.height=12}
ggplot(tpms_melt, aes(x=log(value), colour=variable)) +
geom_density() +
ggtitle("TPM Density plot all samples")
```
we probably should re-normalise TPMs within each column since we removed the highest rows
```{r fig.width=12, fig.height=12}
renorm <- function(x) {
x = (x / sum(x)) * 1e6
}
tpms_rn <- as.data.frame(apply(tpms, 2, renorm))
tpms_rn_melt <- melt(tpms_rn)
tpms_rn_melt$value[tpms_rn_melt$value < 0.01] <- 0
tpms_rn_melt$stage <- gsub(tpms_rn_melt$variable, pattern="\\.[0-9]", replacement="")
ggplot(tpms_rn_melt, aes(x=log(value), group=stage, colour=stage)) +
geom_density() +
ggtitle("Renormalised TPM Density plot")
```
Plot the TPM correlation matrices again with outliers removed and then renormalised
```{r fig.width=12, fig.height=12}
c <- melt(cor(tpms_rn))
ggplot(data=c, aes_string(x=names(c)[1], y=names(c)[2], fill="value")) +
geom_tile() +
ggtitle("TPM Correlation matrix") +
geom_text(aes(label = round(value, 2))) +
xlab('') +
ylab('')
c <- cor(tpms_rn, method="spearman")
c <- melt(c)
c <- c[-which(c$value==1),] # remove 1s so the gradient is better
ggplot(data=c, aes_string(x=names(c)[1], y=names(c)[2], fill="value")) +
geom_tile() +
geom_text(aes(label = round(value, 2))) +
xlab('') +
ylab('') +
ggtitle("TPM Spearman (ranked) correlation matrix")
```
Chloroplast genes could be causing problems - if chloroplasts were highly expressing or were captured at higher rates in one replicate's extractions, that could lead to broken correlations
```{r fig.width=12, fig.height=12}
setwd('/home/cmb211/flaveria/Fp/Fp_2/')
chloro <- read.csv('Fp_chloro_contigs.txt', head=F)
names(chloro)[1] <- 'contig'
nc_tpms <- fixed_tpm[-which(fixed_tpm$contig %in% chloro$contig),] # remove chloroplast contigs
tpms <- nc_tpms[,3:20]
rownames(tpms) <- nc_tpms$contig
tpms_rn <- as.data.frame(apply(tpms, 2, renorm))
c <- melt(cor(tpms_rn))
ggplot(data=c, aes_string(x=names(c)[1], y=names(c)[2], fill="value")) +
geom_tile() +
ggtitle("TPM Correlation Matrix no outliers, no chloroplast") +
geom_text(aes(label = round(value, 2))) +
xlab('') +
ylab('')
tpms_rn_melt <- melt(tpms_rn)
tpms_rn_melt$value[tpms_rn_melt$value < 0.01] <- 0
tpms_rn_melt$stage <- gsub(tpms_rn_melt$variable, pattern="\\.[0-9]", replacement="")
ggplot(tpms_rn_melt, aes(x=log(value), group=stage, colour=stage)) +
geom_density() +
ggtitle("TPM Density plot by section")
```
## Annotation
```{r fig.width=12, fig.height=12}
setwd('/home/cmb211/flaveria/Fp/Fp_2/')
anno <- read.csv('Fp_annotation.txt', head=F, sep='\t') # load annotation (species, contig, agi)
key <- read.csv('key_agi.txt', head=F, sep='\t')
names(anno) <- c("species", "contig", "annotation") # rename column headers
names(key) <- c("agi", "desc")
anno_tpm <- merge(data_tpm, anno, by="contig", all=T) # merge count data and annotation
library(plyr)
anno_tpm <- anno_tpm[,-c(1, 2, 21, 22)] # remove extraneous columns
anno_tpm <- ddply(anno_tpm, .(annotation), numcolwise(sum)) # sum columns, grouping by annotation
key_tpm <- anno_tpm[which(anno_tpm$annotation %in% key$agi),]
desc_tpm <- merge(key_tpm, key, by.x="annotation", by.y="agi", all=F) # add gene description
write.table(desc_tpm, file ="Fp_key_agi.tpm.csv", row.names=F, quote=F,sep = "\t")
```