-
Notifications
You must be signed in to change notification settings - Fork 34
/
coreutils.py
executable file
·812 lines (611 loc) · 30.7 KB
/
coreutils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
#!/usr/bin/env python2
# -------------------------------------------------------------------------------------------------
#
# ,ggggggggggg, _,gggggg,_ ,ggggggggggg, ,gggg,
# dP"""88""""""Y8, ,d8P""d8P"Y8b, dP"""88""""""Y8, ,88"""Y8b,
# Yb, 88 `8b,d8' Y8 "8b,dPYb, 88 `8b d8" `Y8
# `" 88 ,8Pd8' `Ybaaad88P' `" 88 ,8Pd8' 8b d8
# 88aaaad8P" 8P `""""Y8 88aaaad8P",8I "Y88P'
# 88""""Y8ba 8b d8 88""""" I8'
# 88 `8bY8, ,8P 88 d8
# 88 ,8P`Y8, ,8P' 88 Y8,
# 88_____,d8' `Y8b,,__,,d8P' 88 `Yba,,_____,
# 88888888P" `"Y8888P"' 88 `"Y8888888
#
# The Block Oriented Programming (BOP) Compiler - v2.1
#
#
# Kyriakos Ispoglou (ispo) - [email protected]
# PURDUE University, Fall 2016-18
# -------------------------------------------------------------------------------------------------
#
#
# coreutils.py:
#
# This module contains basic declarations and functions that are being used by all other modules.
#
# -------------------------------------------------------------------------------------------------
from config import * # load configuration options
from graphviz import Digraph
import networkx as nx
import datetime
import random
import re
import angr
import textwrap
# -------------------------------------------------------------------------------------------------
''' =========================================================================================== '''
''' CONSTANT DECLARATIONS '''
''' =========================================================================================== '''
# -------------------------------------------------------------------------------------------------
RETURN_SUCCESS = 0 # return code for success
RETURN_FAILURE = -1 # return code for failure
DBG_LVL_0 = 0 # debug level 0: Display no information
DBG_LVL_1 = 1 # debug level 1: Display minimum information
DBG_LVL_2 = 2 # debug level 2: Display basic information
DBG_LVL_3 = 3 # debug level 3: Display detailed information
DBG_LVL_4 = 4 # debug level 3: Display all information
INFINITY = 9999999 # value of infinity
START_PC = 0 # PC of the for the 1st statement
ADDR2NODE = { } # map addresses to basic block nodes
ADDR2FUNC = { } # map basic block addresses to their functions
STR2BV = { } # map strings to bitvectors
# WARNING: be very careful how to set rbp
FRAMEPTR_BASE_ADDR = RSP_BASE_ADDR + 0xc00 # base address of rbp (when it's used)
HARDWARE_REGISTERS = [ # x64 hardware registers
'rax', 'rdx', 'rcx', 'rbx', 'rdi', 'rsi', 'rsp', 'rbp',
'r8', 'r9', 'r10', 'r11', 'r12', 'r13', 'r14', 'r15'
]
SYM2ADDR = { }
SYMBOLIC_FILENAME = 'foo.txt' # filename for the symbolic execution to use
# -------------------------------------------------------------------------------------------------
''' =========================================================================================== '''
''' AUXILIARY FUNCTIONS '''
''' =========================================================================================== '''
# -------------------------------------------------------------------------------------------------
dbg_lvl = DBG_LVL_0 # initially, debug level is set to 0
# -------------------------------------------------------------------------------------------------
# set_dbg_lvl(): Set the current debug level. This is a small trick to share a variable between
# modules. We set the debug level once during startup, so we don't have to carry it around the
# modules.
#
# :Arg lvl: Desired debug lebel.
# :Ret: None.
#
def set_dbg_lvl( lvl ):
global dbg_lvl # use the global var
if lvl: dbg_lvl = lvl # set it accordingly (if lvl is proper)
# ---------------------------------------------------------------------------------------------
# to_uid(): Cast program counter (PC) to unique ID (UID).
#
# :Arg pc: The program counter
# :Ret: The uid.
#
def to_uid( pc ):
if not re.match(r'^@__[0-9]+$', pc): # verify pc
raise Exception("Invalid Program counter '%s'." % pc)
return int(pc[3:]) # simply drop the first 3 characters
# ---------------------------------------------------------------------------------------------
# pretty_list(): Cast a list into a pretty string, for displaying to the user. This can be
# also done using join(), but code starts getting ugly when we have to cast each element.
#
# :Arg uglylist: The list to work on
# :Ret: A string containing a pretty "join" of the list.
#
def pretty_list( uglylist, delimiter=' - '):
pretty = '' # the final string
for elt in uglylist:
if isinstance(elt, int) or isinstance(elt, long):
pretty += delimiter + '%x' % elt
elif isinstance(elt, str):
pretty += delimiter + elt
elif isinstance(elt, angr.analyses.cfg.cfg_node.CFGNode):
pretty += delimiter + '%x' % elt.addr
else:
fatal("Unsupported list element type'%s'" % str(type(elt)))
# drop the first delimiter (if exists) and return string
return pretty[len(delimiter):] if pretty else ''
# -------------------------------------------------------------------------------------------------
# to_edges(): Convert a path to edges. That is, given the path P = ['A', 'B', 'C', 'D', 'E'],
# return its edges: [('A', 'B'), ('B', 'C'), ('C', 'D'), ('D', 'E')]. Function is a
# generator, so it returns one edge at a time.
#
# Note that function can be implemented with a single line: "return zip(path, path[1:])".
# However, the problem with zip() is that it creates 2 more copies of the list, which is
# not very efficient, when paths are long and all we want is to iterate over the edges.
#
# :Arg path: A list that contains a path
# :Arg direction: Edge direction (forward/backward)
# :Ret: Function is a generator. Each time the next edge from the path is returned.
#
def to_edges( path, direction='forward' ):
if len(path) < 2: return # nothing to do
u = path[0] # get the 1st node
for v in path[1:]:
if direction == 'forward': yield (u, v) # return the previous and the current node
elif direction == 'backward': yield (v, u) # or return the backward edge
u = v # update previous node
# -------------------------------------------------------------------------------------------------
# mk_reverse_adj(): Given an Adjacency List, make the Reverse Adjacency List.
#
# :Arg adj: The Adjacency List
# :Ret: Function returns a dictionary which encodes the Reverse Adjacency List.
#
def mk_reverse_adj( adj ):
radj = { }
for a, b in adj.iteritems():
for c in b:
radj.setdefault(c, []).append(a)
return radj
# -------------------------------------------------------------------------------------------------
# disjoint(): Check whether two sets are disjoint or not.
#
# :Arg set_a: The first set
# :Arg set_b: The second set
# :Ret: If sets are disjoint, function returns True. Otherwise it returns False.
#
def disjoint( set_a, set_b ):
for a in set_a:
for b in set_b:
if a == b:
return False
return True
# -------------------------------------------------------------------------------------------------
# log(): Log execution statistics to a file.
#
# :Arg msg: Message to log
# :Ret: None.
#
def log( msg ):
pass # not used.
# -------------------------------------------------------------------------------------------------
''' =========================================================================================== '''
''' PRINTING FUNCTIONS '''
''' =========================================================================================== '''
# -------------------------------------------------------------------------------------------------
# now(): Get current time. Time is prepended to every print statement.
#
# :Ret: A string containing the current time.
#
def now():
return '[%s]' % datetime.datetime.now().strftime("%H:%M:%S,%f")[:-3]
# -------------------------------------------------------------------------------------------------
# dbg_prnt(): Display a debug message to the user.
#
# :Arg lvl: Message's debug level
# :Arg msg: Message to print
# :Arg pre: Message prefix (OPTIONAL)
# :Ret: None.
#
def dbg_prnt( lvl, msg, pre='[+] ' ):
if dbg_lvl >= lvl: # print only if you're in the right level
print now(), pre + msg
# -------------------------------------------------------------------------------------------------
# dbg_arb(): Display a debug message followed by an arbitrary data structure to the user.
#
# :Arg lvl: Message's debug level
# :Arg msg: Message to print
# :Arg arb: The arbitrary data struct (e.g., list, dict) to print
# :Arg pre: Message prefix (OPTIONAL)
# :Ret: None.
#
def dbg_arb( lvl, msg, arb, pre='[+] ' ):
if dbg_lvl >= lvl: # print only if you're in the right level
print now(), pre + msg, arb
# -------------------------------------------------------------------------------------------------
# func_name(): Convert an address to the name of its function, or
# "__unknown" if it cannot be found.
#
# :Arg addr: The address to lookup
# :Ret: Returns a string with the name of the function containing the address, or "__unknown".
#
def func_name ( addr ):
if addr in ADDR2FUNC:
return ADDR2FUNC[addr].name
else:
return "__unknown"
# -------------------------------------------------------------------------------------------------
# fatal(): This function is invoked when a fatal error occurs. It prints the error and terminates
# the program.
#
# :Arg err: Error message to print
# :Ret: None.
#
def fatal( err ):
print '\033[91m%s [FATAL]' % now(), err + '.\033[0m'
exit( RETURN_FAILURE )
# -------------------------------------------------------------------------------------------------
# error(): This function is invoked when a non-fatal error occurs. It prints the error without
# terminating the program.
#
# :Arg err: Error message to print
# :Ret: None.
#
def error( err ):
print '\033[91m%s [ERROR]' % now(), err + '.\033[0m'
# -------------------------------------------------------------------------------------------------
# warn(): Print a warning.
#
# :Arg warning: Warning to print
# :Ret: None.
#
def warn( warn, lvl=DBG_LVL_0 ):
if dbg_lvl >= lvl: # print only if you're in the right level
print '\033[93m%s [WARNING]' % now(), warn + '.\033[0m'
# -------------------------------------------------------------------------------------------------
# warn(): Print an emphasized message.
#
# :Arg msg: Message to pring
# :Arg lvl: Message's debug level
# :Arg pre: Message prefix (OPTIONAL)# :Ret: None.
# :Ret: None.
#
def emph( msg, lvl=DBG_LVL_0 , pre='[*] '):
# default mode is to print always
if dbg_lvl >= lvl: # print only if you're in the right level
print '\033[0;32m%s' % now(), pre + msg + '\033[0m'
# -------------------------------------------------------------------------------------------------
# bold(): Emphasize a number (bold).
#
# :Arg num: Number to make bold
# :Arg ty: The type of the number (int / float)
# :Arg pad: Zero padding size (OPTIONAL)
# :Ret: The emphasized number.
#
def bold( num, ty='int', pad=None ):
fms = 'd' if ty == 'int' else '.2f' # select the format string (int / float)
if not pad:
return ("\033[1m%" + fms + "\033[21m") % num
else:
# this is a double format string (recursive)
return ("\033[1m" + (("%%%d" + fms) % pad) + "\033[21m") % num
# -------------------------------------------------------------------------------------------------
# bolds(): Emphasize a string (bold).
#
# :Arg string: Message to make bold
# :Ret: The emphasized string.
#
def bolds( string ):
return "\033[1m%s\033[21m" % string # print in bold (and unbold)
# -------------------------------------------------------------------------------------------------
# rainbow(): Print a string with rainbow colors.
#
# :Arg string: Message to make rainbow.
# :Ret: None.
#
def rainbow( string ):
RED = lambda key : "\033[91m%c\033[0m" % key
GREEN = lambda key : "\033[92m%c\033[0m" % key
YELLOW = lambda key : "\033[93m%c\033[0m" % key
MAGENTA = lambda key : "\033[95m%c\033[0m" % key
CYAN = lambda key : "\033[96m%c\033[0m" % key
return ''.join([{ 0 : RED,
1 : CYAN,
2 : YELLOW,
3 : MAGENTA,
4 : GREEN
}[ ctr % 5 ](ch) for ctr, ch in enumerate(string)])
# -------------------------------------------------------------------------------------------------
''' =========================================================================================== '''
''' GRAPH VISUALIZATION FUNCTIONS '''
''' =========================================================================================== '''
# -------------------------------------------------------------------------------------------------
# Visualizing Options (VO)
# -------------------------------------------------------------------------------------------------
VO_NONE = 0x0000 # no visualization
VO_TYPE_CFG = 'cfg' # visualizion mode: CFG
VO_TYPE_DELTA = 'delta' # visualizion mode: delta graph
VO_TYPE_CAPABILITY = 'cap' # visualizion mode: capability graph
VO_CFG = 0x0080 # visualize CFG
VO_CAND = 0x0040 # visualize candidate blocks
VO_ACC = 0x0010 # visualize accepted blocks
VO_CLOB = 0x0020 # visualize clobbering blocks
VO_PATHS = 0x1000 # draw execution paths (i.e., dispathcers)
VO_DRAW_INF_EDGES = 0x2000 # draw edges with infinite weight
# -------------------------------------------------------------------------------------------------
# _node_colors(): Color a node properly.
#
# :Arg graph: The name of the generated file.
# :Ret: If the graph is visualized successfully function returns True. Otherwise it returns
# False.
#
class _node_colors( object ):
# ---------------------------------------------------------------------------------------------
#
#
#
def __init__( self ):
self.__colormap = dict()
# ---------------------------------------------------------------------------------------------
#
#
#
def __setitem__( self, color, nodeset ):
for node in nodeset:
self.__colormap[ node ] = color
# ---------------------------------------------------------------------------------------------
#
#
#
def __iter__( self ):
for node, color in self.__colormap.iteritems():
yield (node, color)
# ---------------------------------------------------------------------------------------------
#
#
#
def __contains__( self, node ):
return node in self.__colormap
# ---------------------------------------------------------------------------------------------
#
#
#
def get_nodes( self ):
return self.__colormap.keys()
# -------------------------------------------------------------------------------------------------
# -------------------------------------------------------------------------------------------------
# __get_dg_layers(): Get delta graph layers.
#
# :Arg delta_graph: The delta graph
# :Ret: the list of the layers.
#
def __get_dg_layers( delta_graph ):
return sorted( list(set([uid for uid,_ in delta_graph.nodes()])) )
# -------------------------------------------------------------------------------------------------
# __get_dg_layer_nodes(): Get the nodes from a delta graph layer.
#
# :Arg delta_graph: The delta graph
# :Arg layer_id: Layer to return
# :Ret: the list of nodes for the specified layer.
#
def __get_dg_layer_nodes( delta_graph, layer_id ):
return sorted([addr for uid, addr in delta_graph.nodes() if uid == layer_id])
# -------------------------------------------------------------------------------------------------
# visualize(): Visualize a graph and save it into a (pdf) file. This function supports a
# number of options to customise the visualization.
#
# :Arg filename: The name of the generated file.
# :Arg entry: The entry point that trace searching algorithm starts
# :Arg options: An integer that describes how the CFG should be visualized. It can be the
# logical OR of one or more of the following:
#
# VO_NONE | Do not do anything (Default)
# VO_DRAW_CFG | Draw the CFG
# VO_DRAW_CANDIDATE | Draw all candidate blocks
# VO_DRAW_ACCEPTED | Draw all accepted blocks
# VO_DRAW_CLOBBERING | Draw all clobbering blocks
# VO_DRAW_SE_PATHS | Draw the symbolic execution paths (if any)
# VO_SHOW_LABELS | Show labels for blocks (their address in hex)
# VO_HIDE_EDGES | Do not draw any edges
# VO_NO_FAKERET | Do not draw the "fakeret" edges
#
# :Arg paths: If VO_DRAW_SE_PATHS is set, this argument is a list of the paths to draw
# :Ret: If the CFG is visualized successfully function returns True. Otherwise it returns
# False.
#
def visualize( graph, gtype='', options=VO_NONE, entry=-1, filename=None, paths=set(), cur_uid=0,
func=None ):
G = Digraph('G', format='svg', filename=filename)
nodes = _node_colors()
nodeset = set()
path_edges = { }
path_nodes = set()
'''
if options & VO_DRAW_SE_PATHS: # show
edges = []
# convert paths (a, b, c, d) to edge sets ((a,b), (b,c), (c,d))
for path in paths:
u = path[0]
for v in path[1:]:
edges.append( (u, v) )
u = v
# draw all edges
nx.draw_networkx_edges(G, pos, edgelist=edges,
edge_color='red', style='solid', arrows=False, width=1, alpha=1)
'''
if options & VO_PATHS:
# for path in paths:
# for u in path:
# path_nodes.add(u)
#
# for u, v in zip(path, path[1:]):
# path_edges[ (u, v) ] = 1
path_edges = paths
# ---------------------------------------------------------------------
# Control Flow Graph
# ---------------------------------------------------------------------
if gtype == VO_TYPE_CFG:
# -------------------------------------------------------------------------------
# First identify the set of nodes (along with the color) to visualize
# -------------------------------------------------------------------------------
# -------------------------------------------------------------------------------
if options & VO_CFG:
for node in graph.nodes():
if func and node.addr not in func.block_addrs:
continue
G.node('%x' % node.addr, fillcolor='white', shape='box', style='filled')
nodeset.add(node.addr)
# -------------------------------------------------------------------------------
if options & VO_CAND:
# nodes['yellow' ] = get_nodes('cand')
# (<CFGNode frame_dummy+0x1f 0x40078fL[6]>, [(14, [...]), (16, [...])]),
for node, attr in nx.get_node_attributes(graph, 'cand').iteritems():
if func and node.addr not in func.block_addrs:
continue
G.node('%x' % node.addr, label='%x' % node.addr,
# label='%x\n%s' % (node.addr, ', '.join(['%d' % uid[0] for uid in attr])),
fillcolor='yellow', shape='box', style='filled')
nodeset.add(node.addr)
# -------------------------------------------------------------------------------
if options & VO_ACC:
# nodes['lawngreen'] = ['0x%x\n%s' % (n.addr, ', '.join([str(x) for x in s]))
# for n, s in get_attr('acc')]
#
# (<CFGNode main+0x141 0x4009c6L[17]>, [14])
# print [(n,s) for n, s in get_attr('acc')]
for node, attr in nx.get_node_attributes(graph, 'acc').iteritems():
if func and node.addr not in func.block_addrs:
continue
G.node('%x' % node.addr, label='%x' % node.addr,
# label='%x\n%s' % (node.addr, ', '.join(['%d' % uid for uid in attr])),
# fillcolor='lawngreen',
shape='doubleoctagon', style='filled, bold')
nodeset.add(node.addr)
# -------------------------------------------------------------------------------
if options & VO_CLOB:
# nodes['orangered'] = ['0x%x\n%s' % (n.addr, ', '.join([str(x) for x in s]))
# for n, s in get_attr('clob')]
#
# (<CFGNode _init 0x4005d0[16]>, set([16, 14])),
# print [(n,s) for n, s in get_attr('clob')]
for node, attr in nx.get_node_attributes(graph, 'clob').iteritems():
if func and node.addr not in func.block_addrs:
continue
G.node('%x' % node.addr, label='%x' % node.addr,
# label='0x%x\n%s' % (node.addr, ', '.join(['%d' % uid for uid in attr])),
fillcolor='orangered', shape='box', style='filled')
nodeset.add(node.addr)
# -------------------------------------------------------------------------------
# Entry point
# -------------------------------------------------------------------------------
if entry != -1:
G.node('%x' % entry, shape='box') #, style='filled', fillcolor='gray')
# -------------------------------------------------------------------------------
# Then, draw the edges
# -------------------------------------------------------------------------------
# subgraph = graph.subgraph( nodes.get_nodes() )
# print graph.nodes()
for u, v in graph.edges_iter():
# if u.addr in nodes and v.addr in nodes:
# G.edge('0x%x' % u.addr, '0x%x' % v.addr)
if u.addr in nodeset and v.addr in nodeset:
if (u.addr, v.addr) in path_edges:
pass
# G.edge('0x%x' % u.addr, '0x%x' % v.addr, #label='%d' % path_edges[u.addr, v.addr],
# color='deepskyblue', style='setlinewidth(3)', font='Arial Black',
# fontsize='30'#, fontcolor='purple'
# )
else:
G.edge('%x' % u.addr, '%x' % v.addr)
for (u, v) in path_edges:
path_nodes.add( u )
path_nodes.add( v )
for (u, v) in path_edges:
G.edge('%x' % u, '%x' % v, # label='%d' % path_edges[u.addr, v.addr],
color='blue', style='setlinewidth(5)', font='Arial Black',
fontsize='30', fontcolor='purple'
)
'''
G.node('foo', label='', shape='doubleoctagon', fillcolor='white', style='filled, bold')
G.node('bar', label=' ', shape='ellipse')
G.node('baz', label='', shape='box')
G.node('A', label='', color='white', fillcolor='white')
G.node('B', label='', color='white', fillcolor='white')
G.edge('A', 'B', color='blue', style='setlinewidth(5)')
'''
# -----------------------------------------------------------------------------------
# Delta Graph
# -----------------------------------------------------------------------------------
elif gtype == VO_TYPE_DELTA:
# add invisible edges between layers to align them
for layer_from, layer_to in to_edges(__get_dg_layers(graph)):
nodes_1 = __get_dg_layer_nodes(graph, layer_from)
nodes_2 = __get_dg_layer_nodes(graph, layer_to)
# skip some nodes from the first layer (too many)
# whitelist = [0x41dfe3, 0x41e02a, 0x407a1c, 0x403d4b, 0x403d6c, 0x407887, 0x404D5A]
if layer_from == 2:
nodes_1 = [n for n in nodes_1 if n in whitelist]
if layer_to == 2:
nodes_2 = [n for n in nodes_2 if n in whitelist]
for n in nodes_1:
for m in nodes_2:
G.edge('%d-%x' % (layer_from, n), '%d-%x' % (layer_to, m), color='transparent')
# test edges
#
# G.edge('6-403e4e', '16--1', color='transparent')
# G.edge('6-403fd9', '16--1', color='transparent')
#
# G.node('6-999999', color='transparent', fontcolor='transparent')
for node in graph.nodes():
print node, graph.in_degree(node), graph.out_degree(node)
uid, addr = node
# skip some nodes from the first layer (too many)
if uid == 2 and addr not in whitelist:
print '\tDROP!'
continue
with G.subgraph(name='cluster_%d' % uid) as c:
c.node_attr.update(style='filled', color='white')
# c.edges([('a0', 'a1'), ('a1', 'a2'), ('a2', 'a3')])
# c.attr(label='UID: %d' % uid, labelloc='t' if uid == 0 else 'b' )
c.attr(label='Statement #%d' % uid, style='setlinewidth(3)', color='gray35',
labeljust='l', labelloc='t', fontcolor='gray35')
'''
good = 0
for n in graph.in_edges(node):
if graph[n[0]][node]['weight'] != INFINITY:
good += 1
for n in graph.out_edges(node):
if graph[node][n[1]]['weight'] != INFINITY:
good += 1
if good:
c.node('%d-%x' % (uid, addr), label='0x%x' % addr)
'''
c.node('%d-%x' % (uid, addr), font='Arial Black',
label=('%x' % addr) if addr > 0 else ' -1 ')
# G.node('%d-%x' % (uid, addr), fillcolor='white', shape='box', style='filled')
dbg_arb(DBG_LVL_2, "Path Edges:", path_edges)
for u, v, w in graph.edges(data=True):
print 'Edge', u, ' -> ', v
if (u, v) in path_edges:
G.edge('%d-%x' % u, '%d-%x' % v, label=('%d' % w['weight']) if v[0] != 16 else '0',
color='blue', style='setlinewidth(3)', font='Arial Black',
fontsize='14', fontcolor='blue', constraint='false'
)
G.node('%d-%x' % u, color='blue', fontcolor='blue', style='setlinewidth(3)')
G.node('%d-%x' % v, color='blue', fontcolor='blue', style='setlinewidth(3)')
else:
if u[0] == 2 and u[1] not in whitelist:
continue
if v[0] == 2 and v[1] not in whitelist:
continue
if v[0] == 16:
G.edge('%d-%x' % u, '%d-%x' % v, fontsize='14', label='0', constraint='false' )
elif w['weight'] != INFINITY:
G.edge('%d-%x' % u, '%d-%x' % v, fontsize='14', label='%d' % w['weight'],
constraint='false' )
elif options & VO_DRAW_INF_EDGES:
G.edge('%d-%x' % u, '%d-%x' % v, label='INF', constraint='false' )
pass
# -------------------------------------------------------------------------
# Capability Graph
# -------------------------------------------------------------------------
elif gtype == VO_TYPE_CAPABILITY:
# TODO: 1. Elaborate on call, etc.
# 2. No edge with weigth=0 on stmt on the same addr
get_attr = lambda attr : nx.get_node_attributes(graph, attr).iteritems()
get_nodes = lambda blkty : set([n.addr for n, _ in get_attr(blkty)])
get_stmt = lambda stmt : set([n for n, s in get_attr('type') if s == stmt])
for node, attr in graph.nodes(data=True):
color = {
'regset' : 'whitesmoke',
'regmod' : 'limegreen',
'call' : 'turquoise2',
'cond' : 'maroon1'
}[ attr['type'] ]
G.node('%d' % node, label='0x%x\n%d - %s' % (attr['addr'], node, attr['type']),
fillcolor=color, shape='box', style='filled')
for u, v, w in graph.edges_iter(data=True):
G.edge('%d' % u, '%d' % v, label='%d' % w['weight'])
# ---------------------------------------------------------------------
# Save results to file
# ---------------------------------------------------------------------
# G.view()
try:
G.save(filename + '.dot')
G.render(filename, view=True)
except IOError, err:
error("Cannot save figure: %s" % str(err))
return False # failure
dbg_prnt(DBG_LVL_1, "Done. Graph saved as %s" % filename + '.pdf')
return True
# -------------------------------------------------------------------------------------------------