Skip to content

Latest commit

 

History

History
106 lines (84 loc) · 3.15 KB

README.md

File metadata and controls

106 lines (84 loc) · 3.15 KB

SimSiam

A PyTorch implementation for the paper Exploring Simple Siamese Representation Learning by Xinlei Chen & Kaiming He

This repo also provides pytorch implementations for simclr, byol and swav. I wrote the models using the exact set of configurations in their papers. You can open a pull request if mistakes are found.

Dependencies

If you don't have python 3.8 environment:

conda create -n simsiam python=3.8
conda activate simsiam

Then install the required packages:

pip install -r requirements.txt

Run this command to test the environment

python main.py --debug --dataset cifar10 --data_dir "/Your/data/folder/" --output_dir "/Your/output/folder/"

The data folder should look like this:

➜  ~ tree /Your/data/folder/
├── cifar-10-batches-py
│   ├── batches.meta
│   ├── data_batch_1
│   ├── ...
└── stl10_binary
    ├── ...
python main.py --debug --dataset cifar10 --data_dir ~/Data --output_dir ./outputs/
Epoch 0/1: 100%|████████████████████████████████████| 1/1 [00:03<00:00,  3.60s/it, loss=-.0196, loss_avg=-.0196]
Training: 100%|███████████████████████████████████████████████████████████████████| 1/1 [00:03<00:00,  3.83s/it]
Model saved to ./outputs/simsiam-cifar10-epoch1.pth

export DATA="/path/to/your/datasets/" and export OUTPUT="/path/to/your/output/" will save you the trouble of entering the folder name everytime!

Run SimSiam

I made an example training script for the cifar10 experiment in Appendix D.

sh configs/cifar_experiment.sh

to run in parallel with Distributed Data-Parallel (DDP) use:

sh configs/cifar_experiment_dist.sh
Training: 100%|#################################| 800/800 [3:27:50<00:00, 15.59s/it, epoch=799, loss_avg=-.895]
Model saved to outputs/cifar10_experiment/simsiam-cifar10-epoch800.pth
Evaluating: 100%|###################################| 100/100 [08:24<00:00,  5.04s/it, epoch=99, accuracy=80.8]

Run SimCLR

python main.py \
    --model simclr \
    --optimizer lars \
    --data_dir /path/to/your/datasets/ \
    --output_dir /path/to/your/output/ \
    --backbone resnet50 \
    --dataset imagenet \ 
    --batch_size 4096 \ 
    --num_epochs 800 \
    --optimizer lars_simclr \
    --weight_decay 1e-6 \
    --base_lr 0.3 \
    --warmup_epochs 10

Run BYOL

python main.py \
    --model byol \
    --optimizer lars \ 
    --data_dir /path/to/your/datasets/ \
    --output_dir /path/to/your/output/ \
    --backbone resnet50 \
    --dataset imagenet \ 
    --batch_size 256 \ 
    --num_epochs 100 \ 
    --optimizer lars_simclr \ They use simclr version of lars
    --weight_decay 1.5e-6 \
    --base_lr 0.3 \
    --warmup_epochs 10

TODO

  • convert from data-parallel (DP) to distributed data-parallel (DDP)
  • create PyPI package pip install simsiam-pytorch

If you find this repo helpful, please consider star so that I have the motivation to improve it.