forked from uav4geo/OpenPointClass
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscale.cpp
319 lines (264 loc) · 11.8 KB
/
scale.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
#include "scale.hpp"
Scale::Scale(const size_t id, PointSet *pSet, const double resolution, const int kNeighbors, const double radius) :
id(id), pSet(pSet), scaledSet(new PointSet()), resolution(resolution), kNeighbors(kNeighbors), radius(radius) {
}
void Scale::init() {
#pragma omp critical
{
std::cout << "Init scale " << id << " at " << resolution << " ..." << std::endl;
}
if (id == 0) {
pSet->pointMap.resize(pSet->count());
}
else if (id > 0) {
eigenValues.resize(pSet->count());
eigenVectors.resize(pSet->count());
orderAxis.resize(pSet->count());
heightMin.resize(pSet->count());
heightMax.resize(pSet->count());
if (id == 1) {
avgHsv.resize(pSet->count());
}
}
computeScaledSet();
}
void Scale::build() {
#pragma omp critical
{
std::cout << "Building scale " << id << " (" << scaledSet->count() << " points) ..." << std::endl;
}
#pragma omp parallel
{
const KdTree *index = scaledSet->getIndex<KdTree>();
Eigen::SelfAdjointEigenSolver<Eigen::Matrix3d> solver;
std::vector<size_t> neighborIds(kNeighbors);
std::vector<float> sqrDists(kNeighbors);
#pragma omp for
for (long long int idx = 0; idx < pSet->count(); idx++) {
index->knnSearch(pSet->points[idx].data(), kNeighbors, neighborIds.data(), sqrDists.data());
Eigen::Vector3f medoid = computeMedoid(neighborIds);
Eigen::Matrix3d covariance = computeCovariance(neighborIds, medoid);
solver.computeDirect(covariance);
Eigen::Vector3d ev = solver.eigenvalues();
for (size_t i = 0; i < 3; i++) ev[i] = std::max(ev[i], 0.0);
double sum = ev[0] + ev[1] + ev[2];
eigenValues[idx] = (ev / sum).cast<float>(); // sum-normalized
eigenVectors[idx] = solver.eigenvectors().cast<float>();
// std::cout << "==Covariance==" << std::endl <<
// covariance << std::endl;
// std::cout << "==Medoid==" << std::endl <<
// medoid << std::endl;
// std::cout << "==Eigenvalues==" << std::endl <<
// eigenValues[idx] << std::endl;
// std::cout << "==Eigenvectors==" << std::endl <<
// eigenVectors[idx] << std::endl;
// exit(1);
// lambda1 = eigenValues[idx][2]
// lambda3 = eigenValues[idx][0]
// e1 = eigenVectors[idx].col(2)
// e3 = eigenVectors[idx].col(0)
orderAxis[idx](0, 0) = 0.f;
orderAxis[idx](1, 0) = 0.f;
orderAxis[idx](0, 1) = 0.f;
orderAxis[idx](1, 1) = 0.f;
heightMin[idx] = std::numeric_limits<float>::max();
heightMax[idx] = std::numeric_limits<float>::min();
for (size_t const &i : neighborIds) {
Eigen::Vector3f p(scaledSet->points[i][0],
scaledSet->points[i][1],
scaledSet->points[i][2]);
Eigen::Vector3f n = (p - medoid);
const float v00 = n.dot(eigenVectors[idx].col(2));
const float v01 = n.dot(eigenVectors[idx].col(1));
orderAxis[idx](0, 0) += v00;
orderAxis[idx](0, 1) += v01;
orderAxis[idx](1, 0) += v00 * v00;
orderAxis[idx](1, 1) += v01 * v01;
if (p[2] > heightMax[idx]) heightMax[idx] = p[2];
if (p[2] < heightMin[idx]) heightMin[idx] = p[2];
}
}
if (id == 1) {
std::vector<nanoflann::ResultItem<size_t, float>> radiusMatches;
#pragma omp for
for (long long int idx = 0; idx < pSet->count(); idx++) {
const size_t numMatches = index->radiusSearch(pSet->points[idx].data(), static_cast<float>(radius), radiusMatches);
avgHsv[idx] = { 0.f, 0.f, 0.f };
for (size_t i = 0; i < numMatches; i++) {
const size_t nIdx = radiusMatches[i].first;
auto hsv = rgb2hsv(scaledSet->colors[nIdx][0],
scaledSet->colors[nIdx][1],
scaledSet->colors[nIdx][2]);
for (size_t j = 0; j < 3; j++)
avgHsv[idx][j] += hsv[j];
}
if (numMatches > 0) {
for (size_t j = 0; j < 3; j++)
avgHsv[idx][j] /= numMatches;
}
}
}
}
}
void Scale::computeScaledSet() {
if (scaledSet->points.empty()) {
const bool trackPoints = id == 0;
// Voxel centroid nearest neighbor
// Roughly from https://raw.githubusercontent.com/PDAL/PDAL/master/filters/VoxelCentroidNearestNeighborFilter.cpp
const double x0 = pSet->points[0][0];
const double y0 = pSet->points[0][1];
const double z0 = pSet->points[0][2];
typedef std::make_signed_t<std::size_t> ssize_t;
// Make an initial pass through the input to index indices by
// row, column, and depth.
std::map<std::tuple<ssize_t, ssize_t, ssize_t>, std::vector<size_t> > populated_voxel_ids;
for (size_t id = 0; id < pSet->count(); id++) {
populated_voxel_ids[std::make_tuple(
static_cast<ssize_t>((pSet->points[id][0] - y0) / resolution), // r
static_cast<ssize_t>((pSet->points[id][1] - x0) / resolution), // c
static_cast<ssize_t>((pSet->points[id][2] - z0) / resolution) // d
)].push_back(id);
}
// Make a second pass through the populated voxels to compute the voxel
// centroid and to find its nearest neighbor.
scaledSet->points.clear();
scaledSet->colors.clear();
for (auto const &t : populated_voxel_ids) {
if (t.second.size() == 1) {
// If there is only one point in the voxel, simply append it.
scaledSet->appendPoint(*pSet, t.second[0]);
if (trackPoints) scaledSet->trackPoint(*pSet, t.second[0]);
}
else if (t.second.size() == 2) {
// Else if there are only two, they are equidistant to the
// centroid, so append the one closest to voxel center.
// Compute voxel center.
const double y_center = y0 + (std::get<0>(t.first) + 0.5) * resolution;
const double x_center = x0 + (std::get<1>(t.first) + 0.5) * resolution;
const double z_center = z0 + (std::get<2>(t.first) + 0.5) * resolution;
// Compute distance from first point to voxel center.
const double x1 = pSet->points[t.second[0]][0];
const double y1 = pSet->points[t.second[0]][1];
const double z1 = pSet->points[t.second[0]][2];
const double d1 = std::pow<double>(x_center - x1, 2) + std::pow<double>(y_center - y1, 2) + std::pow<double>(z_center - z1, 2);
// Compute distance from second point to voxel center.
const double x2 = pSet->points[t.second[1]][0];
const double y2 = pSet->points[t.second[1]][1];
const double z2 = pSet->points[t.second[1]][2];
const double d2 = std::pow<double>(x_center - x2, 2) + std::pow<double>(y_center - y2, 2) + std::pow<double>(z_center - z2, 2);
// Append the closer of the two.
if (d1 < d2) scaledSet->appendPoint(*pSet, t.second[0]);
else scaledSet->appendPoint(*pSet, t.second[1]);
if (trackPoints) {
scaledSet->trackPoint(*pSet, t.second[0]);
scaledSet->trackPoint(*pSet, t.second[1]);
}
}
else {
// Else there are more than two neighbors, so choose the one
// closest to the centroid.
// Compute the centroid.
Eigen::Vector3f centroid = computeCentroid(t.second);
// Compute distance from each point in the voxel to the centroid,
// retaining only the closest.
size_t pmin = 0;
double dmin((std::numeric_limits<double>::max)());
for (auto const &p : t.second) {
const double sqr_dist = std::pow<double>(centroid[0] - pSet->points[p][0], 2) +
std::pow<double>(centroid[1] - pSet->points[p][1], 2) +
std::pow<double>(centroid[2] - pSet->points[p][2], 2);
if (sqr_dist < dmin) {
dmin = sqr_dist;
pmin = p;
}
}
scaledSet->appendPoint(*pSet, pmin);
if (trackPoints) {
for (auto const &p : t.second) {
scaledSet->trackPoint(*pSet, p);
}
}
}
}
}
if (id > 0) scaledSet->buildIndex<KdTree>();
}
void Scale::save(const std::string &filename) {
savePointSet(*scaledSet, filename);
}
Eigen::Matrix3d Scale::computeCovariance(const std::vector<size_t> &neighborIds, const Eigen::Vector3f &medoid) {
Eigen::MatrixXd A(3, neighborIds.size());
size_t k = 0;
for (size_t const &i : neighborIds) {
A(0, k) = scaledSet->points[i][0] - medoid[0];
A(1, k) = scaledSet->points[i][1] - medoid[1];
A(2, k) = scaledSet->points[i][2] - medoid[2];
k++;
}
return A * A.transpose() / (neighborIds.size() - 1);
}
Eigen::Vector3f Scale::computeMedoid(const std::vector<size_t> &neighborIds) {
float mx, my, mz;
mx = my = mz = 0.0;
float minDist = std::numeric_limits<float>::max();
for (size_t const &i : neighborIds) {
float sum = 0.0;
const float xi = scaledSet->points[i][0];
const float yi = scaledSet->points[i][1];
const float zi = scaledSet->points[i][2];
for (size_t const &j : neighborIds) {
sum += std::pow<double>(xi - scaledSet->points[j][0], 2) +
std::pow<double>(yi - scaledSet->points[j][1], 2) +
std::pow<double>(zi - scaledSet->points[j][2], 2);
}
if (sum < minDist) {
mx = xi;
my = yi;
mz = zi;
minDist = sum;
}
}
Eigen::Vector3f medoid;
medoid << mx, my, mz;
return medoid;
}
Eigen::Vector3f Scale::computeCentroid(const std::vector<size_t> &pointIds) {
float mx, my, mz;
mx = my = mz = 0.0;
size_t n = 0;
for (auto const &j : pointIds) {
auto update = [&n](const float value, const float average) {
const float delta = value - average;
const float delta_n = delta / n;
return average + delta_n;
};
n++;
mx = update(pSet->points[j][0], mx);
my = update(pSet->points[j][1], my);
mz = update(pSet->points[j][2], mz);
}
Eigen::Vector3f centroid;
centroid << mx, my, mz;
return centroid;
}
std::vector<Scale *> computeScales(size_t numScales, PointSet *pSet, double startResolution, double radius) {
std::vector<Scale *> scales(numScales, nullptr);
auto *base = new Scale(0, pSet, startResolution * std::pow<double>(2.0, 0), 10, radius);
base->init();
// base->save("base.ply");
pSet->base = base->scaledSet;
for (size_t i = 0; i < numScales; i++) {
scales[i] = new Scale(i + 1, base->scaledSet, startResolution * std::pow<double>(2.0, i), 10, radius);
}
// Save some time on the first scale
scales[0]->scaledSet = base->scaledSet;
#pragma omp parallel for
for (int i = 0; i < numScales; i++) {
scales[i]->init();
}
for (int i = 0; i < numScales; i++) {
scales[i]->build();
// scales[i]->save("scale_" + std::to_string(i + 1) + ".ply");
}
return scales;
}