forked from CodeChefVIT/Stress-Detector
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_face.py
109 lines (92 loc) · 4.15 KB
/
test_face.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import numpy as np
import dlib
import cv2
from keras.models import load_model
from keras.preprocessing.image import img_to_array
from scipy.spatial import distance as dist
import imutils
import matplotlib.pyplot as plt
from imutils import face_utils
global points, points_lip, emotion_classifier
def ebdist(leye,reye):
eyedist = dist.euclidean(leye,reye)
points.append(int(eyedist))
return eyedist
def lpdist(l_lower,l_upper):
lipdist = dist.euclidean(l_lower, l_upper)
points_lip.append(int(lipdist))
return lipdist
def emotion_finder(faces,frame):
EMOTIONS = ["angry" ,"disgust","scared", "happy", "sad", "surprised","neutral"]
x,y,w,h = face_utils.rect_to_bb(faces)
frame = frame[y:y+h,x:x+w]
roi = cv2.resize(frame,(64,64))
roi = roi.astype("float") / 255.0
roi = img_to_array(roi)
roi = np.expand_dims(roi,axis=0)
preds = emotion_classifier.predict(roi)[0]
emotion_probability = np.max(preds)
label = EMOTIONS[preds.argmax()]
if label in ['scared','sad','angry']:
label = 'Stressed'
else:
label = 'Not Stressed'
return label
def normalize_values(points,disp,points_lip,dis_lip):
normalize_value_lip = abs(dis_lip - np.min(points_lip))/abs(np.max(points_lip) - np.min(points_lip))
normalized_value_eye =abs(disp - np.min(points))/abs(np.max(points) - np.min(points))
normalized_value =( normalized_value_eye + normalize_value_lip)/2
stress_value = (np.exp(-(normalized_value)))
if stress_value>=0.75:
stress_label="High Stress"
else:
stress_label="Low Stress"
return stress_value,stress_label
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")
emotion_classifier = load_model("_mini_XCEPTION.102-0.66.hdf5", compile=False)
cap = cv2.VideoCapture(0)
points = []
points_lip = []
def get_frame(cap):
while(True):
ret,frame = cap.read()
frame = cv2.flip(frame,1)
frame = imutils.resize(frame, width=500,height=500)
(lBegin, lEnd) = face_utils.FACIAL_LANDMARKS_IDXS["right_eyebrow"]
(rBegin, rEnd) = face_utils.FACIAL_LANDMARKS_IDXS["left_eyebrow"]
# lip aka mouth
(l_lower, l_upper) = face_utils.FACIAL_LANDMARKS_IDXS["mouth"]
#preprocessing the image
gray = cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY)
detections = detector(gray,0)
for detection in detections:
emotion= emotion_finder(detection,gray)
cv2.putText(frame, emotion, (10,10),cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
shape = predictor(frame,detection)
shape = face_utils.shape_to_np(shape)
leyebrow = shape[lBegin:lEnd]
reyebrow = shape[rBegin:rEnd]
openmouth = shape[l_lower:l_upper]
reyebrowhull = cv2.convexHull(reyebrow)
leyebrowhull = cv2.convexHull(leyebrow)
openmouthhull = cv2.convexHull(openmouth) # figuring out convex shape when lips opened
# cv2.drawContours(frame, [reyebrowhull], -1, (0, 255, 0), 1)
# cv2.drawContours(frame, [leyebrowhull], -1, (0, 255, 0), 1)
# cv2.drawContours(frame, [openmouthhull], -1, (0, 255, 0), 1)
# Measuring lip aka "open mouth" and eye distance
lipdist = lpdist(openmouthhull[-1],openmouthhull[0])
eyedist = ebdist(leyebrow[-1],reyebrow[0])
stress_value,stress_label = normalize_values(points,eyedist, points_lip, lipdist)
cv2.putText(frame, emotion, (10,10),cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
cv2.putText(frame,"stress value:{}".format(str(int(stress_value*100))),(10,40),cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
cv2.putText(frame,"Stress level:{}".format((stress_label)),(10,60),cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
cv2.imshow("Frame", frame)
key = cv2.waitKey(1) & 0xFF
if key == ord('q'):
break
cv2.destroyAllWindows()
cap.release()
plt.plot(range(len(points)),points,'ro')
plt.title("Stress Levels")
plt.show()