forked from huggingface/transformers
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsetup.py
142 lines (116 loc) · 5.73 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
"""
Simple check list from AllenNLP repo: https://github.com/allenai/allennlp/blob/master/setup.py
To create the package for pypi.
1. Change the version in __init__.py, setup.py as well as docs/source/conf.py.
2. Unpin specific versions from setup.py (like isort).
2. Commit these changes with the message: "Release: VERSION"
3. Add a tag in git to mark the release: "git tag VERSION -m'Adds tag VERSION for pypi' "
Push the tag to git: git push --tags origin master
4. Build both the sources and the wheel. Do not change anything in setup.py between
creating the wheel and the source distribution (obviously).
For the wheel, run: "python setup.py bdist_wheel" in the top level directory.
(this will build a wheel for the python version you use to build it).
For the sources, run: "python setup.py sdist"
You should now have a /dist directory with both .whl and .tar.gz source versions.
5. Check that everything looks correct by uploading the package to the pypi test server:
twine upload dist/* -r pypitest
(pypi suggest using twine as other methods upload files via plaintext.)
You may have to specify the repository url, use the following command then:
twine upload dist/* -r pypitest --repository-url=https://test.pypi.org/legacy/
Check that you can install it in a virtualenv by running:
pip install -i https://testpypi.python.org/pypi transformers
6. Upload the final version to actual pypi:
twine upload dist/* -r pypi
7. Copy the release notes from RELEASE.md to the tag in github once everything is looking hunky-dory.
8. Update the documentation commit in .circleci/deploy.sh for the accurate documentation to be displayed
9. Update README.md to redirect to correct documentation.
"""
import shutil
from pathlib import Path
from setuptools import find_packages, setup
# Remove stale transformers.egg-info directory to avoid https://github.com/pypa/pip/issues/5466
stale_egg_info = Path(__file__).parent / "transformers.egg-info"
if stale_egg_info.exists():
print(
(
"Warning: {} exists.\n\n"
"If you recently updated transformers to 3.0 or later, this is expected,\n"
"but it may prevent transformers from installing in editable mode.\n\n"
"This directory is automatically generated by Python's packaging tools.\n"
"I will remove it now.\n\n"
"See https://github.com/pypa/pip/issues/5466 for details.\n"
).format(stale_egg_info)
)
shutil.rmtree(stale_egg_info)
extras = {}
extras["mecab"] = ["mecab-python3"]
extras["sklearn"] = ["scikit-learn"]
# keras2onnx and onnxconverter-common version is specific through a commit until 1.7.0 lands on pypi
extras["tf"] = [
"tensorflow",
"onnxconverter-common @ git+git://github.com/microsoft/onnxconverter-common.git@f64ca15989b6dc95a1f3507ff6e4c395ba12dff5#egg=onnxconverter-common",
"keras2onnx @ git+git://github.com/onnx/keras-onnx.git@cbdc75cb950b16db7f0a67be96a278f8d2953b48#egg=keras2onnx"
]
extras["tf-cpu"] = [
"tensorflow-cpu",
"onnxconverter-common @ git+git://github.com/microsoft/onnxconverter-common.git@f64ca15989b6dc95a1f3507ff6e4c395ba12dff5#egg=onnxconverter-common",
"keras2onnx @ git+git://github.com/onnx/keras-onnx.git@cbdc75cb950b16db7f0a67be96a278f8d2953b48#egg=keras2onnx"
]
extras["torch"] = ["torch"]
extras["serving"] = ["pydantic", "uvicorn", "fastapi", "starlette"]
extras["all"] = extras["serving"] + ["tensorflow", "torch"]
extras["testing"] = ["pytest", "pytest-xdist", "timeout-decorator"]
extras["docs"] = ["recommonmark", "sphinx", "sphinx-markdown-tables", "sphinx-rtd-theme"]
extras["quality"] = [
"black",
"isort @ git+git://github.com/timothycrosley/isort.git@e63ae06ec7d70b06df9e528357650281a3d3ec22#egg=isort",
"flake8",
]
extras["dev"] = extras["testing"] + extras["quality"] + ["mecab-python3", "scikit-learn", "tensorflow", "torch"]
setup(
name="transformers",
version="2.9.1",
author="Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Sam Shleifer, Google AI Language Team Authors, Open AI team Authors, Facebook AI Authors, Carnegie Mellon University Authors",
author_email="[email protected]",
description="State-of-the-art Natural Language Processing for TensorFlow 2.0 and PyTorch",
long_description=open("README.md", "r", encoding="utf-8").read(),
long_description_content_type="text/markdown",
keywords="NLP deep learning transformer pytorch tensorflow BERT GPT GPT-2 google openai CMU",
license="Apache",
url="https://github.com/huggingface/transformers",
package_dir={"": "src"},
packages=find_packages("src"),
install_requires=[
"numpy",
"tokenizers == 0.7.0",
# dataclasses for Python versions that don't have it
"dataclasses;python_version<'3.7'",
# filesystem locks e.g. to prevent parallel downloads
"filelock",
# for downloading models over HTTPS
"requests",
# progress bars in model download and training scripts
"tqdm >= 4.27",
# for OpenAI GPT
"regex != 2019.12.17",
# for XLNet
"sentencepiece",
# for XLM
"sacremoses",
],
extras_require=extras,
scripts=["transformers-cli"],
python_requires=">=3.6.0",
classifiers=[
"Development Status :: 5 - Production/Stable",
"Intended Audience :: Developers",
"Intended Audience :: Education",
"Intended Audience :: Science/Research",
"License :: OSI Approved :: Apache Software License",
"Operating System :: OS Independent",
"Programming Language :: Python :: 3",
"Programming Language :: Python :: 3.6",
"Programming Language :: Python :: 3.7",
"Topic :: Scientific/Engineering :: Artificial Intelligence",
],
)