forked from jiacheng-ye/ZeroGen
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.py
executable file
·199 lines (168 loc) · 9.34 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script can be used to generate datasets.
"""
import argparse
import json
import os
import torch
import wandb
import datasets
from cls_generator import DataGenerator, C_KEY
from qa_generator import QADataGenerator
from generation import GPT2Wrapper
from tasks import *
from utils import init_logging, set_seed, read_jsonl, save_jsonl
def task2processor(task_name):
if task_name == 'imdb':
return IMDbProcessor
elif task_name == 'sst-2':
return SST2Processor
elif task_name == 'squad' or task_name == 'adversarial_qa':
return QAProcessor
else:
return GLUEProcessor
def create_output_name(args):
name = [args.model_name, f"topk{args.top_k}", f"topp{args.top_p}", args.task_file.split('/')[-1][:-5]]
if args.decay_constant > 0:
name.append(f"self-debias-{args.decay_constant}")
return '_'.join(name)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument("--output_dir", type=str, required=True,
help="The output directory to which the generated dataset is saved")
parser.add_argument("--task_file", type=str, required=True,
help="A json file providing the instructions and other information required for dataset generation. ")
# Dataset and prompt parameters
parser.add_argument("--input_file", type=str, default=None,
help="An optional input file containing raw texts. This is required for generating text pair datasets.")
# Text generation and sampling parameters
parser.add_argument("--model_name", type=str, default="gpt2-xl",
help="The pretrained model to use for dataset generation. Currently, only variants of GPT2 are supported.")
parser.add_argument("--batch_size", type=int, default=None,
help="The batch size for generation (only if --input_file is not set)")
parser.add_argument("--num_entries_per_input", type=int, default=None,
help="The number of entries to generate for each label (only if --input_file is not set)")
parser.add_argument("--max_length", type=int, default=40,
help="The maximum output length for each generated text.")
parser.add_argument("--min_length", type=int, default=1,
help="Min length of generated text.")
parser.add_argument("--top_p", type=float, default=0.9,
help="p value for top-p sampling (set to 0 to perform no top-p sampling)")
parser.add_argument("--top_k", type=int, default=0,
help="k value for top-k sampling (set to 0 to perform no top-k sampling)")
parser.add_argument("--temperature", type=float, default=1.0,
help="The value used to module the next token probabilities.")
# Self-debiasing parameters
parser.add_argument("--decay_constant", type=float, default=0,
help="The decay constant for self-debiasing")
# Small model parameters
parser.add_argument("--log_every", type=int, default=10000,
help="Train the small model after generating log_every examples.")
parser.add_argument("--small_model_name", type=str, default='distilbert-base-uncased',
help="The small Transformer language model to use.")
parser.add_argument("--small_model_ckpt", type=str, default=None,
help="The saved model to load.")
parser.add_argument("--num_epochs", type=int, default=3,
help="Number of epochs to train the small model.")
parser.add_argument("--train_batch_size", type=int, default=32,
help="Size of batch to train the small model.")
parser.add_argument("--learning_rate", type=float, default=2e-5,
help="Learning rate to train the small model.")
# Miscellaneous further parameters
parser.add_argument("--no_cuda", action='store_true')
parser.add_argument("--seed", type=int, default=42)
args = parser.parse_args()
set_seed(args.seed)
with open(args.task_file, 'r', encoding='utf8') as fh:
task_specification = json.load(fh)
args.task_specification = task_specification
args.task_name = task_specification["task_name"]
is_stage_two = task_specification['stage'] == 'x2'
zero_shot = task_specification['stage'] == 'zs'
if is_stage_two:
output_name = create_output_name(args)
args.output_dir = os.path.join(args.output_dir, output_name)
wandb.init(project=os.getenv("WANDB_PROJECT"), entity=os.getenv("WANDB_ENTITY"), config=args, name=output_name,
tags=[task_specification["task_name"]])
logging = init_logging(log_file=args.output_dir + '/output.log', stdout=True)
logging.info(f"Parameters: {args}")
args_file = os.path.join(args.output_dir, f'{task_specification["task_name"]}-args.json')
with open(args_file, 'w', encoding='utf8') as fh:
fh.write(json.dumps(vars(args), indent=4))
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
processor = task2processor(args.task_name)(task_name=args.task_name,
model_name=args.small_model_name,
model_ckpt=args.small_model_ckpt,
output_dir=args.output_dir,
device=device,
num_epochs=args.num_epochs,
train_batch_size=args.train_batch_size,
learning_rate=args.learning_rate
)
logging.info("Building model...")
model = GPT2Wrapper(model_name=args.model_name, use_cuda=not args.no_cuda)
logging.info("Building generator...")
if isinstance(processor, QAProcessor):
generator = QADataGenerator(
task_spec=task_specification, model=model, max_length=args.max_length, min_length=args.min_length,
top_p=args.top_p, top_k=args.top_k, temperature=args.temperature,
processor=processor, do_sample=True, seed=args.seed, output_dir=args.output_dir
)
if zero_shot:
logging.info("Starting inference under zero-shot setting...")
generator.zero_shot_inference(args.batch_size)
elif is_stage_two:
logging.info("Starting dataset generation, stage two...")
inputs = datasets.load_from_disk(args.input_file)
dataset = generator.generate_question(inputs, num_entries_per_input=args.num_entries_per_input,
batch_size=args.batch_size, log_every=args.log_every)
dataset.save_to_disk(args.output_dir)
else:
logging.info("Starting dataset generation, stage one...")
dataset = generator.generate_answer_ner()
dataset.save_to_disk(args.output_dir)
else:
generator = DataGenerator(
task_spec=task_specification, model=model, max_length=args.max_length,
top_p=args.top_p, top_k=args.top_k, temperature=args.temperature, do_sample=True,
processor=processor,
min_length=args.min_length,
is_stage_two=is_stage_two,
decay_constant=args.decay_constant,
output_dir=args.output_dir
)
if zero_shot:
logging.info("Starting inference under zero-shot setting...")
dataset = processor.dataset[processor.validation_key]
generator.zero_shot_inference(dataset, args.batch_size)
else:
if args.input_file:
logging.info(f"Use condition c from {args.input_file}")
inputs = [i[C_KEY] for i in read_jsonl(args.input_file)]
elif is_stage_two and processor.sentence2_key is not None:
logging.info("Use condition c from dataset")
inputs = processor.dataset[processor.train_key][processor.sentence1_key]
else:
logging.info("Do not use condition c")
inputs = None
logging.info("Starting dataset generation...")
outputs = generator.generate_dataset(inputs, num_entries_per_input=args.num_entries_per_input,
batch_size=args.batch_size, log_every=args.log_every)
logging.info(f"Dataset generation complete, dataset contains {len(outputs)} entries")
dataset_path = os.path.join(args.output_dir, f'{task_specification["task_name"]}-dataset.jsonl')
save_jsonl(outputs, dataset_path)
logging.info(f"Done saving dataset to file '{dataset_path}'")
if is_stage_two:
wandb.save(args.output_dir)