-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathmodel.py
318 lines (279 loc) · 14 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
import torch as t
from torch import nn
import torch.nn.functional as F
from params import args
import numpy as np
from Utils.TimeLogger import log
from torch.nn import MultiheadAttention
from time import time
init = nn.init.xavier_uniform_
uniformInit = nn.init.uniform_
class FeedForwardLayer(nn.Module):
def __init__(self, in_feat, out_feat, bias=True, act=None):
super(FeedForwardLayer, self).__init__()
self.linear = nn.Linear(in_feat, out_feat, bias=bias)#, dtype=t.bfloat16)
if act == 'identity' or act is None:
self.act = None
elif act == 'leaky':
self.act = nn.LeakyReLU(negative_slope=args.leaky)
elif act == 'relu':
self.act = nn.ReLU()
elif act == 'relu6':
self.act = nn.ReLU6()
else:
raise Exception('Error')
def forward(self, embeds):
if self.act is None:
return self.linear(embeds)
return self.act(self.linear(embeds))
class TopoEncoder(nn.Module):
def __init__(self):
super(TopoEncoder, self).__init__()
self.layer_norm = nn.LayerNorm(args.latdim, elementwise_affine=False)
def forward(self, adj, embeds, normed=False):
with t.no_grad():
if not normed:
embeds = self.layer_norm(embeds)
# embeds_list = []
final_embeds = 0
if args.gnn_layer == 0:
final_embeds = embeds
# embeds_list.append(embeds)
for _ in range(args.gnn_layer):
embeds = t.spmm(adj, embeds)
final_embeds += embeds
# embeds_list.append(embeds)
embeds = final_embeds#sum(embeds_list)
return embeds
class MLP(nn.Module):
def __init__(self):
super(MLP, self).__init__()
self.dense_layers = nn.Sequential(*[FeedForwardLayer(args.latdim, args.latdim, bias=True, act=args.act) for _ in range(args.fc_layer)])
self.layer_norms = nn.Sequential(*[nn.LayerNorm(args.latdim, elementwise_affine=True) for _ in range(args.fc_layer)])
self.dropout = nn.Dropout(p=args.drop_rate)
def forward(self, embeds):
for i in range(args.fc_layer):
embeds = self.layer_norms[i](self.dropout(self.dense_layers[i](embeds)) + embeds)
return embeds
class GTLayer(nn.Module):
def __init__(self):
super(GTLayer, self).__init__()
self.multi_head_attention = MultiheadAttention(args.latdim, args.head, dropout=0.1, bias=False)#, dtype=t.bfloat16)
self.dense_layers = nn.Sequential(*[FeedForwardLayer(args.latdim, args.latdim, bias=True, act=args.act) for _ in range(2)])# bias=False
self.layer_norm1 = nn.LayerNorm(args.latdim, elementwise_affine=True)#, dtype=t.bfloat16)
self.layer_norm2 = nn.LayerNorm(args.latdim, elementwise_affine=True)#, dtype=t.bfloat16)
self.fc_dropout = nn.Dropout(p=args.drop_rate)
def _pick_anchors(self, embeds):
perm = t.randperm(embeds.shape[0])
anchors = perm[:args.anchor]
return embeds[anchors]
def forward(self, embeds):
anchor_embeds = self._pick_anchors(embeds)
_anchor_embeds, _ = self.multi_head_attention(anchor_embeds, embeds, embeds)
anchor_embeds = _anchor_embeds + anchor_embeds
_embeds, _ = self.multi_head_attention(embeds, anchor_embeds, anchor_embeds, need_weights=False)
embeds = self.layer_norm1(_embeds + embeds)
_embeds = self.fc_dropout(self.dense_layers(embeds))
embeds = (self.layer_norm2(_embeds + embeds))
return embeds
class GraphTransformer(nn.Module):
def __init__(self):
super(GraphTransformer, self).__init__()
self.gt_layers = nn.Sequential(*[GTLayer() for i in range(args.gt_layer)])
def forward(self, embeds):
for i, layer in enumerate(self.gt_layers):
embeds = layer(embeds) / args.scale_layer
return embeds
class Feat_Projector(nn.Module):
def __init__(self, feats):
super(Feat_Projector, self).__init__()
if args.proj_method == 'uniform':
self.proj_embeds = self.uniform_proj(feats)
elif args.proj_method == 'svd' or args.proj_method == 'both':
self.proj_embeds = self.svd_proj(feats)
elif args.proj_method == 'random':
self.proj_embeds = self.random_proj(feats)
elif args.proj_method == 'original':
self.proj_embeds = feats
self.proj_embeds = t.flip(self.proj_embeds, dims=[-1])
self.proj_embeds = self.proj_embeds.detach()
def svd_proj(self, feats):
if args.latdim > feats.shape[0] or args.latdim > feats.shape[1]:
dim = min(feats.shape[0], feats.shape[1])
decom_feats, s, decom_featdim = t.svd_lowrank(feats, q=dim, niter=args.niter)
decom_feats = t.concat([decom_feats, t.zeros([decom_feats.shape[0], args.latdim-dim]).to(args.devices[0])], dim=1)
s = t.concat([s, t.zeros(args.latdim - dim).to(args.devices[0])])
else:
decom_feats, s, decom_featdim = t.svd_lowrank(feats, q=args.latdim, niter=args.niter)
decom_feats = decom_feats @ t.diag(t.sqrt(s))
return decom_feats.cpu()
def uniform_proj(self, feats):
projection = init(t.empty(args.featdim, args.latdim))
return feats @ projection
def random_proj(self, feats):
projection = init(t.empty(feats.shape[0], args.latdim))
return projection
def forward(self):
return self.proj_embeds
class Adj_Projector(nn.Module):
def __init__(self, adj):
super(Adj_Projector, self).__init__()
if args.proj_method == 'adj_svd' or args.proj_method == 'both':
self.proj_embeds = self.svd_proj(adj)
self.proj_embeds = self.proj_embeds.detach()
def svd_proj(self, adj):
q = args.latdim
if args.latdim > adj.shape[0] or args.latdim > adj.shape[1]:
dim = min(adj.shape[0], adj.shape[1])
svd_u, s, svd_v = t.svd_lowrank(adj, q=dim, niter=args.niter)
svd_u = t.concat([svd_u, t.zeros([svd_u.shape[0], args.latdim-dim]).to(args.devices[0])], dim=1)
svd_v = t.concat([svd_v, t.zeros([svd_v.shape[0], args.latdim-dim]).to(args.devices[0])], dim=1)
s = t.concat([s, t.zeros(args.latdim-dim).to(args.devices[0])])
else:
svd_u, s, svd_v = t.svd_lowrank(adj, q=q, niter=args.niter)
svd_u = svd_u @ t.diag(t.sqrt(s))
svd_v = svd_v @ t.diag(t.sqrt(s))
if adj.shape[0] != adj.shape[1]:
projection = t.concat([svd_u, svd_v], dim=0)
else:
projection = svd_u + svd_v
return projection.cpu()
def forward(self):
return self.proj_embeds
class Expert(nn.Module):
def __init__(self):
super(Expert, self).__init__()
self.topo_encoder = TopoEncoder().to(args.devices[0])
if args.nn == 'mlp':
self.trainable_nn = MLP().to(args.devices[1])
else:
self.trainable_nn = GraphTransformer().to(args.devices[1])
self.trn_count = 1
def forward(self, projectors, pck_nodes=None):
embeds = projectors.to(args.devices[1])
if pck_nodes is not None:
embeds = embeds[pck_nodes]
embeds = self.trainable_nn(embeds)
return embeds
def pred_norm(self, pos_preds, neg_preds):
pos_preds_num = pos_preds.shape[0]
neg_preds_shape = neg_preds.shape
preds = t.concat([pos_preds, neg_preds.view(-1)])
preds = preds - preds.max()
pos_preds = preds[:pos_preds_num]
neg_preds = preds[pos_preds_num:].view(neg_preds_shape)
return pos_preds, neg_preds
def cal_loss(self, batch_data, projectors):
ancs, poss, negs = list(map(lambda x: x.to(args.devices[1]), batch_data))
self.trn_count += ancs.shape[0]
pck_nodes = t.concat([ancs, poss, negs])
final_embeds = self.forward(projectors, pck_nodes)
# anc_embeds, pos_embeds, neg_embeds = final_embeds[ancs], final_embeds[poss], final_embeds[negs]
anc_embeds, pos_embeds, neg_embeds = t.split(final_embeds, [ancs.shape[0]] * 3)
if final_embeds.isinf().any() or final_embeds.isnan().any():
raise Exception('Final embedding fails')
if args.loss == 'ce':
pos_preds, neg_preds = self.pred_norm((anc_embeds * pos_embeds).sum(-1), anc_embeds @ neg_embeds.T)
if pos_preds.isinf().any() or pos_preds.isnan().any() or neg_preds.isinf().any() or neg_preds.isnan().any():
raise Exception('Preds fails')
pos_loss = pos_preds
neg_loss = (neg_preds.exp().sum(-1) + pos_preds.exp() + 1e-8).log()
pre_loss = -(pos_loss - neg_loss).mean()
elif args.loss == 'bpr':
pos_preds = (anc_embeds * pos_embeds).sum(-1)
neg_preds = (anc_embeds * neg_embeds).sum(-1)
pos_loss, neg_loss = pos_preds, neg_preds
pre_loss = -((pos_preds - neg_preds).sigmoid() + 1e-10).log().mean()
if t.isinf(pre_loss).any() or t.isnan(pre_loss).any():
raise Exception('NaN or Inf')
reg_loss = sum(list(map(lambda W: W.norm(2).square() * args.reg, self.parameters())))
loss_dict = {'preloss': pre_loss, 'regloss': reg_loss, 'posloss': pos_loss.mean(), 'negloss': neg_loss.mean()}
return pre_loss + reg_loss, loss_dict
def pred_for_test(self, batch_data, cand_size, projectors, rerun_embed=True):
ancs, trn_mask = list(map(lambda x: x.to(args.devices[1]), batch_data))
if rerun_embed:
try:
final_embeds = self.forward(projectors)
except Exception:
final_embeds_list = []
div = args.batch * 3
temlen = projectors.shape[0] // div
for i in range(temlen):
st, ed = div * i, div * (i + 1)
tem_projectors = projectors[st: ed, :]
final_embeds_list.append(self.forward(tem_projectors))
if temlen * div < projectors.shape[0]:
tem_projectors = projectors[temlen*div:, :]
final_embeds_list.append(self.forward(tem_projectors))
final_embeds = t.concat(final_embeds_list, dim=0)
self.final_embeds = final_embeds
final_embeds = self.final_embeds
anc_embeds = final_embeds[ancs]
cand_embeds = final_embeds[-cand_size:]
mask_mat = t.sparse.FloatTensor(trn_mask, t.ones(trn_mask.shape[1]).to(args.devices[1]), t.Size([ancs.shape[0], cand_size]))
dense_mat = mask_mat.to_dense()
all_preds = anc_embeds @ cand_embeds.T * (1 - dense_mat) - dense_mat * 1e8
return all_preds
def attempt(self, topo_embeds, dataset):
final_embeds = self.trainable_nn(topo_embeds)
rows, cols, negs = list(map(lambda x: t.from_numpy(x).long().to(args.devices[1]), [dataset.ancs, dataset.poss, dataset.negs]))
if rows.shape[0] > args.attempt_cache:
random_perm = t.randperm(rows.shape[0], device=args.devices[0])
pck_perm = random_perm[:args.attempt_cache]
rows = rows[pck_perm]
cols = cols[pck_perm]
negs = negs[pck_perm]
while True:
try:
row_embeds = final_embeds[rows]
col_embeds = final_embeds[cols]
neg_embeds = final_embeds[negs]
score = ((row_embeds * col_embeds).sum(-1) - (row_embeds * neg_embeds).sum(-1)).sigmoid().mean().item()
break
except Exception:
args.attempt_cache = args.attempt_cache // 2
random_perm = t.randperm(rows.shape[0], device=args.devices[0])
pck_perm = random_perm[:args.attempt_cache]
rows = rows[pck_perm]
cols = cols[pck_perm]
negs = negs[pck_perm]
t.cuda.empty_cache()
return score
class AnyGraph(nn.Module):
def __init__(self):
super(AnyGraph, self).__init__()
self.experts = nn.ModuleList([Expert() for _ in range(args.expert_num)]).cuda()
self.opts = list(map(lambda expert: t.optim.Adam(expert.parameters(), lr=args.lr, weight_decay=0), self.experts))
def assign_experts(self, handlers, reca=True, log_assignment=False):
if args.expert_num == 1:
self.assignment = [0] * len(handlers)
return
try:
expert_scores = np.array(list(map(lambda expert: expert.trn_count, self.experts)))
expert_scores = (1.0 - expert_scores / np.sum(expert_scores)) * args.reca_range + 1.0 - args.reca_range / 2
except Exception:
expert_scores = np.ones(len(self.experts))
with t.no_grad():
assignment = [list() for i in range(len(handlers))]
for dataset_id, handler in enumerate(handlers):
topo_embeds = handler.projectors.to(args.devices[1])
for expert_id, expert in enumerate(self.experts):
expert = expert.to(args.devices[1])
score = expert.attempt(topo_embeds, handler.trn_loader.dataset)
if reca:
score *= expert_scores[expert_id]
assignment[dataset_id].append((expert_id, score))
assignment[dataset_id].sort(key=lambda x: x[1], reverse=True)
if log_assignment:
print('\n----------\nAssignment')
for dataset_id, handler in enumerate(handlers):
out = ''
for exp_idx in range(min(4, len(self.experts))):
out += f'({assignment[dataset_id][exp_idx][0]}, {assignment[dataset_id][exp_idx][1]}) '
print(handler.data_name, out)
print('----------\n')
self.assignment = list(map(lambda x: x[0][0], assignment))
def summon(self, dataset_id):
return self.experts[self.assignment[dataset_id]]
def summon_opt(self, dataset_id):
return self.opts[self.assignment[dataset_id]]