-
Notifications
You must be signed in to change notification settings - Fork 52
/
Copy pathutils.py
252 lines (192 loc) · 7.33 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import matplotlib
matplotlib.use("Agg")
from matplotlib import pyplot as plt
from scipy.io import wavfile
from vocoder.vocgan_generator import Generator
import hparams as hp
import os
import text
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def get_alignment(tier):
sil_phones = ['sil', 'sp', 'spn']
phones = []
durations = []
start_time = 0
end_time = 0
end_idx = 0
for t in tier._objects:
s, e, p = t.start_time, t.end_time, t.text
# Trimming leading silences
if phones == []:
if p in sil_phones:
continue
else:
start_time = s
if p not in sil_phones:
phones.append(p)
end_time = e
end_idx = len(phones)
else:
phones.append(p)
durations.append(int(e*hp.sampling_rate/hp.hop_length)-int(s*hp.sampling_rate/hp.hop_length))
# Trimming tailing silences
phones = phones[:end_idx]
durations = durations[:end_idx]
return phones, np.array(durations), start_time, end_time
def process_meta(meta_path):
with open(meta_path, "r", encoding="utf-8") as f:
text = []
name = []
for line in f.readlines():
n, t = line.strip('\n').split('|')
name.append(n)
text.append(t)
return name, text
def get_param_num(model):
num_param = sum(param.numel() for param in model.parameters())
return num_param
def plot_data(data, titles=None, filename=None):
fig, axes = plt.subplots(len(data), 1, squeeze=False)
if titles is None:
titles = [None for i in range(len(data))]
def add_axis(fig, old_ax, offset=0):
ax = fig.add_axes(old_ax.get_position(), anchor='W')
ax.set_facecolor("None")
return ax
for i in range(len(data)):
spectrogram, pitch, energy = data[i]
axes[i][0].imshow(spectrogram, origin='lower')
axes[i][0].set_aspect(2.5, adjustable='box')
axes[i][0].set_ylim(0, hp.n_mel_channels)
axes[i][0].set_title(titles[i], fontsize='medium')
axes[i][0].tick_params(labelsize='x-small', left=False, labelleft=False)
axes[i][0].set_anchor('W')
ax1 = add_axis(fig, axes[i][0])
ax1.plot(pitch, color='tomato')
ax1.set_xlim(0, spectrogram.shape[1])
ax1.set_ylim(0, hp.f0_max)
ax1.set_ylabel('F0', color='tomato')
ax1.tick_params(labelsize='x-small', colors='tomato', bottom=False, labelbottom=False)
ax2 = add_axis(fig, axes[i][0], 1.2)
ax2.plot(energy, color='darkviolet')
ax2.set_xlim(0, spectrogram.shape[1])
ax2.set_ylim(hp.energy_min, hp.energy_max)
ax2.set_ylabel('Energy', color='darkviolet')
ax2.yaxis.set_label_position('right')
ax2.tick_params(labelsize='x-small', colors='darkviolet', bottom=False, labelbottom=False, left=False, labelleft=False, right=True, labelright=True)
plt.savefig(filename, dpi=200)
plt.close()
def get_mask_from_lengths(lengths, max_len=None):
batch_size = lengths.shape[0]
if max_len is None:
max_len = torch.max(lengths).item()
ids = torch.arange(0, max_len).unsqueeze(0).expand(batch_size, -1).to(device)
mask = (ids >= lengths.unsqueeze(1).expand(-1, max_len))
return mask
def get_vocgan(ckpt_path, n_mel_channels=hp.n_mel_channels, generator_ratio = [4, 4, 2, 2, 2, 2], n_residual_layers=4, mult=256, out_channels=1):
checkpoint = torch.load(ckpt_path)
model = Generator(n_mel_channels, n_residual_layers,
ratios=generator_ratio, mult=mult,
out_band=out_channels)
model.load_state_dict(checkpoint['model_g'])
model.to(device).eval()
return model
def vocgan_infer(mel, vocoder, path):
model = vocoder
with torch.no_grad():
if len(mel.shape) == 2:
mel = mel.unsqueeze(0)
audio = model.infer(mel).squeeze()
audio = hp.max_wav_value * audio[:-(hp.hop_length*10)]
audio = audio.clamp(min=-hp.max_wav_value, max=hp.max_wav_value-1)
audio = audio.short().cpu().detach().numpy()
wavfile.write(path, hp.sampling_rate, audio)
def pad_1D(inputs, PAD=0):
def pad_data(x, length, PAD):
x_padded = np.pad(x, (0, length - x.shape[0]),
mode='constant',
constant_values=PAD)
return x_padded
max_len = max((len(x) for x in inputs))
padded = np.stack([pad_data(x, max_len, PAD) for x in inputs])
return padded
def pad_2D(inputs, maxlen=None):
def pad(x, max_len):
PAD = 0
if np.shape(x)[0] > max_len:
raise ValueError("not max_len")
s = np.shape(x)[1]
x_padded = np.pad(x, (0, max_len - np.shape(x)[0]),
mode='constant',
constant_values=PAD)
return x_padded[:, :s]
if maxlen:
output = np.stack([pad(x, maxlen) for x in inputs])
else:
max_len = max(np.shape(x)[0] for x in inputs)
output = np.stack([pad(x, max_len) for x in inputs])
return output
def pad(input_ele, mel_max_length=None):
if mel_max_length:
max_len = mel_max_length
else:
max_len = max([input_ele[i].size(0)for i in range(len(input_ele))])
out_list = list()
for i, batch in enumerate(input_ele):
if len(batch.shape) == 1:
one_batch_padded = F.pad(
batch, (0, max_len-batch.size(0)), "constant", 0.0)
elif len(batch.shape) == 2:
one_batch_padded = F.pad(
batch, (0, 0, 0, max_len-batch.size(0)), "constant", 0.0)
out_list.append(one_batch_padded)
out_padded = torch.stack(out_list)
return out_padded
# from dathudeptrai's FastSpeech2 implementation
def standard_norm(x, mean, std, is_mel=False):
if not is_mel:
x = remove_outlier(x)
zero_idxs = np.where(x == 0.0)[0]
x = (x - mean) / std
x[zero_idxs] = 0.0
return x
def standard_norm_torch(x, mean, std):
zero_idxs = torch.where(x == 0.0)[0]
x = (x - mean) / std
x[zero_idxs] = 0.0
return x
def de_norm(x, mean, std):
zero_idxs = torch.where(x == 0.0)[0]
x = mean + std * x
x[zero_idxs] = 0.0
return x
def _is_outlier(x, p25, p75):
"""Check if value is an outlier."""
lower = p25 - 1.5 * (p75 - p25)
upper = p75 + 1.5 * (p75 - p25)
return np.logical_or(x <= lower, x >= upper)
def remove_outlier(x):
"""Remove outlier from x."""
p25 = np.percentile(x, 25)
p75 = np.percentile(x, 75)
indices_of_outliers = []
for ind, value in enumerate(x):
if _is_outlier(value, p25, p75):
indices_of_outliers.append(ind)
x[indices_of_outliers] = 0.0
# replace by mean f0.
x[indices_of_outliers] = np.max(x)
return x
def average_by_duration(x, durs):
mel_len = durs.sum()
durs_cum = np.cumsum(np.pad(durs, (1, 0)))
# calculate charactor f0/energy
x_char = np.zeros((durs.shape[0],), dtype=np.float32)
for idx, start, end in zip(range(mel_len), durs_cum[:-1], durs_cum[1:]):
values = x[start:end][np.where(x[start:end] != 0.0)[0]]
x_char[idx] = np.mean(values) if len(values) > 0 else 0.0 # np.mean([]) = nan.
return x_char.astype(np.float32)