forked from hashicorp/raft
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnet_transport.go
879 lines (755 loc) · 24.7 KB
/
net_transport.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
// Copyright (c) HashiCorp, Inc.
// SPDX-License-Identifier: MPL-2.0
package raft
import (
"bufio"
"context"
"errors"
"fmt"
"io"
"net"
"os"
"sync"
"time"
metrics "github.com/armon/go-metrics"
"github.com/hashicorp/go-hclog"
"github.com/hashicorp/go-msgpack/codec"
)
const (
rpcAppendEntries uint8 = iota
rpcRequestVote
rpcInstallSnapshot
rpcTimeoutNow
// DefaultTimeoutScale is the default TimeoutScale in a NetworkTransport.
DefaultTimeoutScale = 256 * 1024 // 256KB
// DefaultMaxRPCsInFlight is the default value used for pipelining configuration
// if a zero value is passed. See https://github.com/hashicorp/raft/pull/541
// for rationale. Note, if this is changed we should update the doc comments
// below for NetworkTransportConfig.MaxRPCsInFlight.
DefaultMaxRPCsInFlight = 2
// connReceiveBufferSize is the size of the buffer we will use for reading RPC requests into
// on followers
connReceiveBufferSize = 256 * 1024 // 256KB
// connSendBufferSize is the size of the buffer we will use for sending RPC request data from
// the leader to followers.
connSendBufferSize = 256 * 1024 // 256KB
// minInFlightForPipelining is a property of our current pipelining
// implementation and must not be changed unless we change the invariants of
// that implementation. Roughly speaking even with a zero-length in-flight
// buffer we still allow 2 requests to be in-flight before we block because we
// only block after sending and the receiving go-routine always unblocks the
// chan right after first send. This is a constant just to provide context
// rather than a magic number in a few places we have to check invariants to
// avoid panics etc.
minInFlightForPipelining = 2
)
var (
// ErrTransportShutdown is returned when operations on a transport are
// invoked after it's been terminated.
ErrTransportShutdown = errors.New("transport shutdown")
// ErrPipelineShutdown is returned when the pipeline is closed.
ErrPipelineShutdown = errors.New("append pipeline closed")
)
// NetworkTransport provides a network based transport that can be
// used to communicate with Raft on remote machines. It requires
// an underlying stream layer to provide a stream abstraction, which can
// be simple TCP, TLS, etc.
//
// This transport is very simple and lightweight. Each RPC request is
// framed by sending a byte that indicates the message type, followed
// by the MsgPack encoded request.
//
// The response is an error string followed by the response object,
// both are encoded using MsgPack.
//
// InstallSnapshot is special, in that after the RPC request we stream
// the entire state. That socket is not re-used as the connection state
// is not known if there is an error.
type NetworkTransport struct {
connPool map[ServerAddress][]*netConn
connPoolLock sync.Mutex
consumeCh chan RPC
heartbeatFn func(RPC)
heartbeatFnLock sync.Mutex
logger hclog.Logger
maxPool int
maxInFlight int
serverAddressProvider ServerAddressProvider
shutdown bool
shutdownCh chan struct{}
shutdownLock sync.Mutex
stream StreamLayer
// streamCtx is used to cancel existing connection handlers.
streamCtx context.Context
streamCancel context.CancelFunc
streamCtxLock sync.RWMutex
timeout time.Duration
TimeoutScale int
}
// NetworkTransportConfig encapsulates configuration for the network transport layer.
type NetworkTransportConfig struct {
// ServerAddressProvider is used to override the target address when establishing a connection to invoke an RPC
ServerAddressProvider ServerAddressProvider
Logger hclog.Logger
// Dialer
Stream StreamLayer
// MaxPool controls how many connections we will pool
MaxPool int
// MaxRPCsInFlight controls the pipelining "optimization" when replicating
// entries to followers.
//
// Setting this to 1 explicitly disables pipelining since no overlapping of
// request processing is allowed. If set to 1 the pipelining code path is
// skipped entirely and every request is entirely synchronous.
//
// If zero is set (or left as default), DefaultMaxRPCsInFlight is used which
// is currently 2. A value of 2 overlaps the preparation and sending of the
// next request while waiting for the previous response, but avoids additional
// queuing.
//
// Historically this was internally fixed at (effectively) 130 however
// performance testing has shown that in practice the pipelining optimization
// combines badly with batching and actually has a very large negative impact
// on commit latency when throughput is high, whilst having very little
// benefit on latency or throughput in any other case! See
// [#541](https://github.com/hashicorp/raft/pull/541) for more analysis of the
// performance impacts.
//
// Increasing this beyond 2 is likely to be beneficial only in very
// high-latency network conditions. HashiCorp doesn't recommend using our own
// products this way.
//
// To maintain the behavior from before version 1.4.1 exactly, set this to
// 130. The old internal constant was 128 but was used directly as a channel
// buffer size. Since we send before blocking on the channel and unblock the
// channel as soon as the receiver is done with the earliest outstanding
// request, even an unbuffered channel (buffer=0) allows one request to be
// sent while waiting for the previous one (i.e. 2 inflight). so the old
// buffer actually allowed 130 RPCs to be inflight at once.
MaxRPCsInFlight int
// Timeout is used to apply I/O deadlines. For InstallSnapshot, we multiply
// the timeout by (SnapshotSize / TimeoutScale).
Timeout time.Duration
}
// ServerAddressProvider is a target address to which we invoke an RPC when establishing a connection
type ServerAddressProvider interface {
ServerAddr(id ServerID) (ServerAddress, error)
}
// StreamLayer is used with the NetworkTransport to provide
// the low level stream abstraction.
type StreamLayer interface {
net.Listener
// Dial is used to create a new outgoing connection
Dial(address ServerAddress, timeout time.Duration) (net.Conn, error)
}
type netConn struct {
target ServerAddress
conn net.Conn
w *bufio.Writer
dec *codec.Decoder
enc *codec.Encoder
}
func (n *netConn) Release() error {
return n.conn.Close()
}
type netPipeline struct {
conn *netConn
trans *NetworkTransport
doneCh chan AppendFuture
inprogressCh chan *appendFuture
shutdown bool
shutdownCh chan struct{}
shutdownLock sync.Mutex
}
// NewNetworkTransportWithConfig creates a new network transport with the given config struct
func NewNetworkTransportWithConfig(
config *NetworkTransportConfig,
) *NetworkTransport {
if config.Logger == nil {
config.Logger = hclog.New(&hclog.LoggerOptions{
Name: "raft-net",
Output: hclog.DefaultOutput,
Level: hclog.DefaultLevel,
})
}
maxInFlight := config.MaxRPCsInFlight
if maxInFlight == 0 {
// Default zero value
maxInFlight = DefaultMaxRPCsInFlight
}
trans := &NetworkTransport{
connPool: make(map[ServerAddress][]*netConn),
consumeCh: make(chan RPC),
logger: config.Logger,
maxPool: config.MaxPool,
maxInFlight: maxInFlight,
shutdownCh: make(chan struct{}),
stream: config.Stream,
timeout: config.Timeout,
TimeoutScale: DefaultTimeoutScale,
serverAddressProvider: config.ServerAddressProvider,
}
// Create the connection context and then start our listener.
trans.setupStreamContext()
go trans.listen()
return trans
}
// NewNetworkTransport creates a new network transport with the given dialer
// and listener. The maxPool controls how many connections we will pool. The
// timeout is used to apply I/O deadlines. For InstallSnapshot, we multiply
// the timeout by (SnapshotSize / TimeoutScale).
func NewNetworkTransport(
stream StreamLayer,
maxPool int,
timeout time.Duration,
logOutput io.Writer,
) *NetworkTransport {
if logOutput == nil {
logOutput = os.Stderr
}
logger := hclog.New(&hclog.LoggerOptions{
Name: "raft-net",
Output: logOutput,
Level: hclog.DefaultLevel,
})
config := &NetworkTransportConfig{Stream: stream, MaxPool: maxPool, Timeout: timeout, Logger: logger}
return NewNetworkTransportWithConfig(config)
}
// NewNetworkTransportWithLogger creates a new network transport with the given logger, dialer
// and listener. The maxPool controls how many connections we will pool. The
// timeout is used to apply I/O deadlines. For InstallSnapshot, we multiply
// the timeout by (SnapshotSize / TimeoutScale).
func NewNetworkTransportWithLogger(
stream StreamLayer,
maxPool int,
timeout time.Duration,
logger hclog.Logger,
) *NetworkTransport {
config := &NetworkTransportConfig{Stream: stream, MaxPool: maxPool, Timeout: timeout, Logger: logger}
return NewNetworkTransportWithConfig(config)
}
// setupStreamContext is used to create a new stream context. This should be
// called with the stream lock held.
func (n *NetworkTransport) setupStreamContext() {
ctx, cancel := context.WithCancel(context.Background())
n.streamCtx = ctx
n.streamCancel = cancel
}
// getStreamContext is used retrieve the current stream context.
func (n *NetworkTransport) getStreamContext() context.Context {
n.streamCtxLock.RLock()
defer n.streamCtxLock.RUnlock()
return n.streamCtx
}
// SetHeartbeatHandler is used to set up a heartbeat handler
// as a fast-pass. This is to avoid head-of-line blocking from
// disk IO.
func (n *NetworkTransport) SetHeartbeatHandler(cb func(rpc RPC)) {
n.heartbeatFnLock.Lock()
defer n.heartbeatFnLock.Unlock()
n.heartbeatFn = cb
}
// CloseStreams closes the current streams.
func (n *NetworkTransport) CloseStreams() {
n.connPoolLock.Lock()
defer n.connPoolLock.Unlock()
// Close all the connections in the connection pool and then remove their
// entry.
for k, e := range n.connPool {
for _, conn := range e {
conn.Release()
}
delete(n.connPool, k)
}
// Cancel the existing connections and create a new context. Both these
// operations must always be done with the lock held otherwise we can create
// connection handlers that are holding a context that will never be
// cancelable.
n.streamCtxLock.Lock()
n.streamCancel()
n.setupStreamContext()
n.streamCtxLock.Unlock()
}
// Close is used to stop the network transport.
func (n *NetworkTransport) Close() error {
n.shutdownLock.Lock()
defer n.shutdownLock.Unlock()
if !n.shutdown {
close(n.shutdownCh)
n.stream.Close()
n.shutdown = true
}
return nil
}
// Consumer implements the Transport interface.
func (n *NetworkTransport) Consumer() <-chan RPC {
return n.consumeCh
}
// LocalAddr implements the Transport interface.
func (n *NetworkTransport) LocalAddr() ServerAddress {
return ServerAddress(n.stream.Addr().String())
}
// IsShutdown is used to check if the transport is shutdown.
func (n *NetworkTransport) IsShutdown() bool {
select {
case <-n.shutdownCh:
return true
default:
return false
}
}
// getExistingConn is used to grab a pooled connection.
func (n *NetworkTransport) getPooledConn(target ServerAddress) *netConn {
n.connPoolLock.Lock()
defer n.connPoolLock.Unlock()
conns, ok := n.connPool[target]
if !ok || len(conns) == 0 {
return nil
}
var conn *netConn
num := len(conns)
conn, conns[num-1] = conns[num-1], nil
n.connPool[target] = conns[:num-1]
return conn
}
// getConnFromAddressProvider returns a connection from the server address provider if available, or defaults to a connection using the target server address
func (n *NetworkTransport) getConnFromAddressProvider(id ServerID, target ServerAddress) (*netConn, error) {
address := n.getProviderAddressOrFallback(id, target)
return n.getConn(address)
}
func (n *NetworkTransport) getProviderAddressOrFallback(id ServerID, target ServerAddress) ServerAddress {
if n.serverAddressProvider != nil {
serverAddressOverride, err := n.serverAddressProvider.ServerAddr(id)
if err != nil {
n.logger.Warn("unable to get address for server, using fallback address", "id", id, "fallback", target, "error", err)
} else {
return serverAddressOverride
}
}
return target
}
// getConn is used to get a connection from the pool.
func (n *NetworkTransport) getConn(target ServerAddress) (*netConn, error) {
// Check for a pooled conn
if conn := n.getPooledConn(target); conn != nil {
return conn, nil
}
// Dial a new connection
conn, err := n.stream.Dial(target, n.timeout)
if err != nil {
return nil, err
}
// Wrap the conn
netConn := &netConn{
target: target,
conn: conn,
dec: codec.NewDecoder(bufio.NewReader(conn), &codec.MsgpackHandle{}),
w: bufio.NewWriterSize(conn, connSendBufferSize),
}
netConn.enc = codec.NewEncoder(netConn.w, &codec.MsgpackHandle{})
// Done
return netConn, nil
}
// returnConn returns a connection back to the pool.
func (n *NetworkTransport) returnConn(conn *netConn) {
n.connPoolLock.Lock()
defer n.connPoolLock.Unlock()
key := conn.target
conns := n.connPool[key]
if !n.IsShutdown() && len(conns) < n.maxPool {
n.connPool[key] = append(conns, conn)
} else {
conn.Release()
}
}
// AppendEntriesPipeline returns an interface that can be used to pipeline
// AppendEntries requests.
func (n *NetworkTransport) AppendEntriesPipeline(id ServerID, target ServerAddress) (AppendPipeline, error) {
if n.maxInFlight < minInFlightForPipelining {
// Pipelining is disabled since no more than one request can be outstanding
// at once. Skip the whole code path and use synchronous requests.
return nil, ErrPipelineReplicationNotSupported
}
// Get a connection
conn, err := n.getConnFromAddressProvider(id, target)
if err != nil {
return nil, err
}
// Create the pipeline
return newNetPipeline(n, conn, n.maxInFlight), nil
}
// AppendEntries implements the Transport interface.
func (n *NetworkTransport) AppendEntries(id ServerID, target ServerAddress, args *AppendEntriesRequest, resp *AppendEntriesResponse) error {
return n.genericRPC(id, target, rpcAppendEntries, args, resp)
}
// RequestVote implements the Transport interface.
func (n *NetworkTransport) RequestVote(id ServerID, target ServerAddress, args *RequestVoteRequest, resp *RequestVoteResponse) error {
return n.genericRPC(id, target, rpcRequestVote, args, resp)
}
// genericRPC handles a simple request/response RPC.
func (n *NetworkTransport) genericRPC(id ServerID, target ServerAddress, rpcType uint8, args interface{}, resp interface{}) error {
// Get a conn
conn, err := n.getConnFromAddressProvider(id, target)
if err != nil {
return err
}
// Set a deadline
if n.timeout > 0 {
conn.conn.SetDeadline(time.Now().Add(n.timeout))
}
// Send the RPC
if err = sendRPC(conn, rpcType, args); err != nil {
return err
}
// Decode the response
canReturn, err := decodeResponse(conn, resp)
if canReturn {
n.returnConn(conn)
}
return err
}
// InstallSnapshot implements the Transport interface.
func (n *NetworkTransport) InstallSnapshot(id ServerID, target ServerAddress, args *InstallSnapshotRequest, resp *InstallSnapshotResponse, data io.Reader) error {
// Get a conn, always close for InstallSnapshot
conn, err := n.getConnFromAddressProvider(id, target)
if err != nil {
return err
}
defer conn.Release()
// Set a deadline, scaled by request size
if n.timeout > 0 {
timeout := n.timeout * time.Duration(args.Size/int64(n.TimeoutScale))
if timeout < n.timeout {
timeout = n.timeout
}
conn.conn.SetDeadline(time.Now().Add(timeout))
}
// Send the RPC
if err = sendRPC(conn, rpcInstallSnapshot, args); err != nil {
return err
}
// Stream the state
if _, err = io.Copy(conn.w, data); err != nil {
return err
}
// Flush
if err = conn.w.Flush(); err != nil {
return err
}
// Decode the response, do not return conn
_, err = decodeResponse(conn, resp)
return err
}
// EncodePeer implements the Transport interface.
func (n *NetworkTransport) EncodePeer(id ServerID, p ServerAddress) []byte {
address := n.getProviderAddressOrFallback(id, p)
return []byte(address)
}
// DecodePeer implements the Transport interface.
func (n *NetworkTransport) DecodePeer(buf []byte) ServerAddress {
return ServerAddress(buf)
}
// TimeoutNow implements the Transport interface.
func (n *NetworkTransport) TimeoutNow(id ServerID, target ServerAddress, args *TimeoutNowRequest, resp *TimeoutNowResponse) error {
return n.genericRPC(id, target, rpcTimeoutNow, args, resp)
}
// listen is used to handling incoming connections.
func (n *NetworkTransport) listen() {
const baseDelay = 5 * time.Millisecond
const maxDelay = 1 * time.Second
var loopDelay time.Duration
for {
// Accept incoming connections
conn, err := n.stream.Accept()
if err != nil {
if loopDelay == 0 {
loopDelay = baseDelay
} else {
loopDelay *= 2
}
if loopDelay > maxDelay {
loopDelay = maxDelay
}
if !n.IsShutdown() {
n.logger.Error("failed to accept connection", "error", err)
}
select {
case <-n.shutdownCh:
return
case <-time.After(loopDelay):
continue
}
}
// No error, reset loop delay
loopDelay = 0
n.logger.Debug("accepted connection", "local-address", n.LocalAddr(), "remote-address", conn.RemoteAddr().String())
// Handle the connection in dedicated routine
go n.handleConn(n.getStreamContext(), conn)
}
}
// handleConn is used to handle an inbound connection for its lifespan. The
// handler will exit when the passed context is cancelled or the connection is
// closed.
func (n *NetworkTransport) handleConn(connCtx context.Context, conn net.Conn) {
defer conn.Close()
r := bufio.NewReaderSize(conn, connReceiveBufferSize)
w := bufio.NewWriter(conn)
dec := codec.NewDecoder(r, &codec.MsgpackHandle{})
enc := codec.NewEncoder(w, &codec.MsgpackHandle{})
for {
select {
case <-connCtx.Done():
n.logger.Debug("stream layer is closed")
return
default:
}
if err := n.handleCommand(r, dec, enc); err != nil {
if err != io.EOF {
n.logger.Error("failed to decode incoming command", "error", err)
}
return
}
if err := w.Flush(); err != nil {
n.logger.Error("failed to flush response", "error", err)
return
}
}
}
// handleCommand is used to decode and dispatch a single command.
func (n *NetworkTransport) handleCommand(r *bufio.Reader, dec *codec.Decoder, enc *codec.Encoder) error {
getTypeStart := time.Now()
// Get the rpc type
rpcType, err := r.ReadByte()
if err != nil {
return err
}
// measuring the time to get the first byte separately because the heartbeat conn will hang out here
// for a good while waiting for a heartbeat whereas the append entries/rpc conn should not.
metrics.MeasureSince([]string{"raft", "net", "getRPCType"}, getTypeStart)
decodeStart := time.Now()
// Create the RPC object
respCh := make(chan RPCResponse, 1)
rpc := RPC{
RespChan: respCh,
}
// Decode the command
isHeartbeat := false
var labels []metrics.Label
switch rpcType {
case rpcAppendEntries:
var req AppendEntriesRequest
if err := dec.Decode(&req); err != nil {
return err
}
rpc.Command = &req
leaderAddr := req.RPCHeader.Addr
if len(leaderAddr) == 0 {
leaderAddr = req.Leader
}
// Check if this is a heartbeat
if req.Term != 0 && leaderAddr != nil &&
req.PrevLogEntry == 0 && req.PrevLogTerm == 0 &&
len(req.Entries) == 0 && req.LeaderCommitIndex == 0 {
isHeartbeat = true
}
if isHeartbeat {
labels = []metrics.Label{{Name: "rpcType", Value: "Heartbeat"}}
} else {
labels = []metrics.Label{{Name: "rpcType", Value: "AppendEntries"}}
}
case rpcRequestVote:
var req RequestVoteRequest
if err := dec.Decode(&req); err != nil {
return err
}
rpc.Command = &req
labels = []metrics.Label{{Name: "rpcType", Value: "RequestVote"}}
case rpcInstallSnapshot:
var req InstallSnapshotRequest
if err := dec.Decode(&req); err != nil {
return err
}
rpc.Command = &req
rpc.Reader = io.LimitReader(r, req.Size)
labels = []metrics.Label{{Name: "rpcType", Value: "InstallSnapshot"}}
case rpcTimeoutNow:
var req TimeoutNowRequest
if err := dec.Decode(&req); err != nil {
return err
}
rpc.Command = &req
labels = []metrics.Label{{Name: "rpcType", Value: "TimeoutNow"}}
default:
return fmt.Errorf("unknown rpc type %d", rpcType)
}
metrics.MeasureSinceWithLabels([]string{"raft", "net", "rpcDecode"}, decodeStart, labels)
processStart := time.Now()
// Check for heartbeat fast-path
if isHeartbeat {
n.heartbeatFnLock.Lock()
fn := n.heartbeatFn
n.heartbeatFnLock.Unlock()
if fn != nil {
fn(rpc)
goto RESP
}
}
// Dispatch the RPC
select {
case n.consumeCh <- rpc:
case <-n.shutdownCh:
return ErrTransportShutdown
}
// Wait for response
RESP:
// we will differentiate the heartbeat fast path from normal RPCs with labels
metrics.MeasureSinceWithLabels([]string{"raft", "net", "rpcEnqueue"}, processStart, labels)
respWaitStart := time.Now()
select {
case resp := <-respCh:
defer metrics.MeasureSinceWithLabels([]string{"raft", "net", "rpcRespond"}, respWaitStart, labels)
// Send the error first
respErr := ""
if resp.Error != nil {
respErr = resp.Error.Error()
}
if err := enc.Encode(respErr); err != nil {
return err
}
// Send the response
if err := enc.Encode(resp.Response); err != nil {
return err
}
case <-n.shutdownCh:
return ErrTransportShutdown
}
return nil
}
// decodeResponse is used to decode an RPC response and reports whether
// the connection can be reused.
func decodeResponse(conn *netConn, resp interface{}) (bool, error) {
// Decode the error if any
var rpcError string
if err := conn.dec.Decode(&rpcError); err != nil {
conn.Release()
return false, err
}
// Decode the response
if err := conn.dec.Decode(resp); err != nil {
conn.Release()
return false, err
}
// Format an error if any
if rpcError != "" {
return true, fmt.Errorf(rpcError)
}
return true, nil
}
// sendRPC is used to encode and send the RPC.
func sendRPC(conn *netConn, rpcType uint8, args interface{}) error {
// Write the request type
if err := conn.w.WriteByte(rpcType); err != nil {
conn.Release()
return err
}
// Send the request
if err := conn.enc.Encode(args); err != nil {
conn.Release()
return err
}
// Flush
if err := conn.w.Flush(); err != nil {
conn.Release()
return err
}
return nil
}
// newNetPipeline is used to construct a netPipeline from a given transport and
// connection. It is a bug to ever call this with maxInFlight less than 2
// (minInFlightForPipelining) and will cause a panic.
func newNetPipeline(trans *NetworkTransport, conn *netConn, maxInFlight int) *netPipeline {
if maxInFlight < minInFlightForPipelining {
// Shouldn't happen (tm) since we validate this in the one call site and
// skip pipelining if it's lower.
panic("pipelining makes no sense if maxInFlight < 2")
}
n := &netPipeline{
conn: conn,
trans: trans,
// The buffer size is 2 less than the configured max because we send before
// waiting on the channel and the decode routine unblocks the channel as
// soon as it's waiting on the first request. So a zero-buffered channel
// still allows 1 request to be sent even while decode is still waiting for
// a response from the previous one. i.e. two are inflight at the same time.
inprogressCh: make(chan *appendFuture, maxInFlight-2),
doneCh: make(chan AppendFuture, maxInFlight-2),
shutdownCh: make(chan struct{}),
}
go n.decodeResponses()
return n
}
// decodeResponses is a long running routine that decodes the responses
// sent on the connection.
func (n *netPipeline) decodeResponses() {
timeout := n.trans.timeout
for {
select {
case future := <-n.inprogressCh:
if timeout > 0 {
n.conn.conn.SetReadDeadline(time.Now().Add(timeout))
}
_, err := decodeResponse(n.conn, future.resp)
future.respond(err)
select {
case n.doneCh <- future:
case <-n.shutdownCh:
return
}
case <-n.shutdownCh:
return
}
}
}
// AppendEntries is used to pipeline a new append entries request.
func (n *netPipeline) AppendEntries(args *AppendEntriesRequest, resp *AppendEntriesResponse) (AppendFuture, error) {
// Create a new future
future := &appendFuture{
start: time.Now(),
args: args,
resp: resp,
}
future.init()
// Add a send timeout
if timeout := n.trans.timeout; timeout > 0 {
n.conn.conn.SetWriteDeadline(time.Now().Add(timeout))
}
// Send the RPC
if err := sendRPC(n.conn, rpcAppendEntries, future.args); err != nil {
return nil, err
}
// Hand-off for decoding, this can also cause back-pressure
// to prevent too many inflight requests
select {
case n.inprogressCh <- future:
return future, nil
case <-n.shutdownCh:
return nil, ErrPipelineShutdown
}
}
// Consumer returns a channel that can be used to consume complete futures.
func (n *netPipeline) Consumer() <-chan AppendFuture {
return n.doneCh
}
// Close is used to shut down the pipeline connection.
func (n *netPipeline) Close() error {
n.shutdownLock.Lock()
defer n.shutdownLock.Unlock()
if n.shutdown {
return nil
}
// Release the connection
n.conn.Release()
n.shutdown = true
close(n.shutdownCh)
return nil
}