-
Notifications
You must be signed in to change notification settings - Fork 713
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Crash during Deployment of model on Vertex AI #154
Comments
You seem to have a mismatch in tensor flow versions between the notebook
and docker image.
I see both 2-6 and 2-9 referenced in the error log. Could you check?
thanks,
Lak
…On Wed, Aug 3, 2022, 3:41 PM Chris Shin ***@***.***> wrote:
Chapter 9 within "Deploy model to Vertex AI" section in
flights_model_tf2.ipynb. The deployment crashes when you try to execute the
first cell:
...
# upload model
gcloud beta ai models upload --region=$REGION --display-name=$MODEL_NAME \
--container-image-uri=us-docker.pkg.dev/vertex-ai/prediction/tf2-cpu.${TF_VERSION}:latest <http://us-docker.pkg.dev/vertex-ai/prediction/tf2-cpu.$%7BTF_VERSION%7D:latest> \
--artifact-uri=$EXPORT_PATH
MODEL_ID=$(gcloud ai models list --region=$REGION --format='value(MODEL_ID)' --filter=display_name=${MODEL_NAME})
echo "MODEL_ID=$MODEL_ID"
# deploy model to endpoint
gcloud ai endpoints deploy-model $ENDPOINT_ID \
--region=$REGION \
--model=$MODEL_ID \
--display-name=$MODEL_NAME \
--machine-type=n1-standard-2 \
--min-replica-count=1 \
--max-replica-count=1 \
--traffic-split=0=100
When I check the Vertex Endpoints, one was created but something else
seems to have gone wrong.
Output:
gs://tribbute-ml-central/ch9/trained_model/export/flights_20220803-222758/
Creating Endpoint for flights-20220803-223154
ENDPOINT_ID=974809417000157184
MODEL_ID=
followed by very long error (the error was too long so I pasted part of
it):
Using endpoint [https://us-central1-aiplatform.googleapis.com/]
WARNING: The following filter keys were not present in any resource : display_name
Using endpoint [https://us-central1-aiplatform.googleapis.com/]
Waiting for operation [7706081518493368320]...
.....done.
Created Vertex AI endpoint: projects/591020730428/locations/us-central1/endpoints/974809417000157184.
Using endpoint [https://us-central1-aiplatform.googleapis.com/]
Using endpoint [https://us-central1-aiplatform.googleapis.com/]
ERROR: gcloud crashed (InvalidDataFromServerError): Error decoding response "{
"models": [
{
"name": "projects/591020730428/locations/us-central1/models/1316788319564070912",
"displayName": "flights-20220803-223002",
"predictSchemata": {},
"containerSpec": {
"imageUri": "us-docker.pkg.dev/vertex-ai/prediction/tf2-cpu.2-9:latest"
},
"supportedDeploymentResourcesTypes": [
"DEDICATED_RESOURCES"
],
"supportedInputStorageFormats": [
"jsonl",
"bigquery",
"csv",
"tf-record",
"tf-record-gzip",
"file-list"
],
"supportedOutputStorageFormats": [
"jsonl",
"bigquery"
],
"createTime": "2022-08-03T22:30:12.377079Z",
"updateTime": "2022-08-03T22:30:14.993220Z",
"etag": "AMEw9yOIRZqfqqO_ngaA77Jw8Fs9E_kcI8tkqAIsTzFViX-aIrRbHfc0d2HRBihT32rp",
"supportedExportFormats": [
{
"id": "custom-trained",
"exportableContents": [
"ARTIFACT"
]
}
],
...
If you would like to report this issue, please run the following command:
gcloud feedback
To check gcloud for common problems, please run the following command:
gcloud info --run-diagnostics
Using endpoint [https://us-central1-aiplatform.googleapis.com/]
ERROR: (gcloud.ai.endpoints.deploy-model) could not parse resource []
---------------------------------------------------------------------------
CalledProcessError Traceback (most recent call last)
/tmp/ipykernel_1/3503756464.py in <module>
----> 1 get_ipython().run_cell_magic('bash', '', '# note TF_VERSION and ENDPOINT_NAME set in 1st cell\n# TF_VERSION=2-6\n# ENDPOINT_NAME=flights\n\nTIMESTAMP=$(date +%Y%m%d-%H%M%S)\nMODEL_NAME=${ENDPOINT_NAME}-${TIMESTAMP}\nEXPORT_PATH=$(gsutil ls ${OUTDIR}/export | tail -1)\necho $EXPORT_PATH\n\nif [[ $(gcloud ai endpoints list --region=$REGION \\\n --format=\'value(DISPLAY_NAME)\' --filter=display_name=${ENDPOINT_NAME}) ]]; then\n echo "Endpoint for $MODEL_NAME already exists"\nelse\n # create model\n echo "Creating Endpoint for $MODEL_NAME"\n gcloud ai endpoints create --region=${REGION} --display-name=${ENDPOINT_NAME}\nfi\n\nENDPOINT_ID=$(gcloud ai endpoints list --region=$REGION \\\n --format=\'value(ENDPOINT_ID)\' --filter=display_name=${ENDPOINT_NAME})\necho "ENDPOINT_ID=$ENDPOINT_ID"\n\n# delete any existing models with this name\nfor MODEL_ID in $(gcloud ai models list --region=$REGION --format=\'value(MODEL_ID)\' --filter=display_name=${MODEL_NAME}); do\n echo "Deleting existing $MODEL_NAME ... $MODEL_ID "\n gcloud ai models delete --region=$REGION $MODEL_ID\ndone\n\n# upload model\ngcloud beta ai models upload --region=$REGION --display-name=$MODEL_NAME \\\n --container-image-uri=us-docker.pkg.dev/vertex-ai/prediction/tf2-cpu.${TF_VERSION}:latest <http://us-docker.pkg.dev/vertex-ai/prediction/tf2-cpu.$%7BTF_VERSION%7D:latest> \\\n --artifact-uri=$EXPORT_PATH\nMODEL_ID=$(gcloud ai models list --region=$REGION --format=\'value(MODEL_ID)\' --filter=display_name=${MODEL_NAME})\necho "MODEL_ID=$MODEL_ID"\n\n# deploy model to endpoint\ngcloud ai endpoints deploy-model $ENDPOINT_ID \\\n --region=$REGION \\\n --model=$MODEL_ID \\\n --display-name=$MODEL_NAME \\\n --machine-type=n1-standard-2 \\\n --min-replica-count=1 \\\n --max-replica-count=1 \\\n --traffic-split=0=100\n')
/opt/conda/lib/python3.7/site-packages/IPython/core/interactiveshell.py in run_cell_magic(self, magic_name, line, cell)
2470 with self.builtin_trap:
2471 args = (magic_arg_s, cell)
-> 2472 result = fn(*args, **kwargs)
2473 return result
2474
/opt/conda/lib/python3.7/site-packages/IPython/core/magics/script.py in named_script_magic(line, cell)
140 else:
141 line = script
--> 142 return self.shebang(line, cell)
143
144 # write a basic docstring:
/opt/conda/lib/python3.7/site-packages/decorator.py in fun(*args, **kw)
230 if not kwsyntax:
231 args, kw = fix(args, kw, sig)
--> 232 return caller(func, *(extras + args), **kw)
233 fun.__name__ = func.__name__
234 fun.__doc__ = func.__doc__
/opt/conda/lib/python3.7/site-packages/IPython/core/magic.py in <lambda>(f, *a, **k)
185 # but it's overkill for just that one bit of state.
186 def magic_deco(arg):
--> 187 call = lambda f, *a, **k: f(*a, **k)
188
189 if callable(arg):
/opt/conda/lib/python3.7/site-packages/IPython/core/magics/script.py in shebang(self, line, cell)
243 sys.stderr.flush()
244 if args.raise_error and p.returncode!=0:
--> 245 raise CalledProcessError(p.returncode, cell, output=out, stderr=err)
246
247 def _run_script(self, p, cell, to_close):
CalledProcessError: Command 'b'# note TF_VERSION and ENDPOINT_NAME set in 1st cell\n# TF_VERSION=2-6\n# ENDPOINT_NAME=flights\n\nTIMESTAMP=$(date +%Y%m%d-%H%M%S)\nMODEL_NAME=${ENDPOINT_NAME}-${TIMESTAMP}\nEXPORT_PATH=$(gsutil ls ${OUTDIR}/export | tail -1)\necho $EXPORT_PATH\n\nif [[ $(gcloud ai endpoints list --region=$REGION \\\n --format=\'value(DISPLAY_NAME)\' --filter=display_name=${ENDPOINT_NAME}) ]]; then\n echo "Endpoint for $MODEL_NAME already exists"\nelse\n # create model\n echo "Creating Endpoint for $MODEL_NAME"\n gcloud ai endpoints create --region=${REGION} --display-name=${ENDPOINT_NAME}\nfi\n\nENDPOINT_ID=$(gcloud ai endpoints list --region=$REGION \\\n --format=\'value(ENDPOINT_ID)\' --filter=display_name=${ENDPOINT_NAME})\necho "ENDPOINT_ID=$ENDPOINT_ID"\n\n# delete any existing models with this name\nfor MODEL_ID in $(gcloud ai models list --region=$REGION --format=\'value(MODEL_ID)\' --filter=display_name=${MODEL_NAME}); do\n echo "Deleting existing $MODEL_NAME ... $MODEL_ID "\n gcloud ai models delete --region=$REGION $MODEL_ID\ndone\n\n# upload model\ngcloud beta ai models upload --region=$REGION --display-name=$MODEL_NAME \\\n --container-image-uri=us-docker.pkg.dev/vertex-ai/prediction/tf2-cpu.${TF_VERSION}:latest <http://us-docker.pkg.dev/vertex-ai/prediction/tf2-cpu.$%7BTF_VERSION%7D:latest> \\\n --artifact-uri=$EXPORT_PATH\nMODEL_ID=$(gcloud ai models list --region=$REGION --format=\'value(MODEL_ID)\' --filter=display_name=${MODEL_NAME})\necho "MODEL_ID=$MODEL_ID"\n\n# deploy model to endpoint\ngcloud ai endpoints deploy-model $ENDPOINT_ID \\\n --region=$REGION \\\n --model=$MODEL_ID \\\n --display-name=$MODEL_NAME \\\n --machine-type=n1-standard-2 \\\n --min-replica-count=1 \\\n --max-replica-count=1 \\\n --traffic-split=0=100\n'' returned non-zero exit status 1.
—
Reply to this email directly, view it on GitHub
<#154>,
or unsubscribe
<https://github.com/notifications/unsubscribe-auth/AANJPZ7HJN32NDLY3ZZC2S3VXLYRLANCNFSM55QPAVDA>
.
You are receiving this because you are subscribed to this thread.Message
ID: ***@***.***>
|
@lakshmanok After I am only using one version so I don't know where the other versions are coming from. The complete error message is: click to see entire error messageUsing endpoint [https://us-central1-aiplatform.googleapis.com/] WARNING: The following filter keys were not present in any resource : display_name Using endpoint [https://us-central1-aiplatform.googleapis.com/] Waiting for operation [476678216656879616]... .....done. Created Vertex AI endpoint: projects/591020730428/locations/us-central1/endpoints/2473382193007689728. Using endpoint [https://us-central1-aiplatform.googleapis.com/] Using endpoint [https://us-central1-aiplatform.googleapis.com/] ERROR: gcloud crashed (InvalidDataFromServerError): Error decoding response "{ "models": [ { "name": "projects/591020730428/locations/us-central1/models/9103512075287658496", "displayName": "flights-20220804-012641", "predictSchemata": {}, "containerSpec": { "imageUri": "us-docker.pkg.dev/vertex-ai/prediction/tf2-cpu.2.9.0-rc2:latest" }, "supportedDeploymentResourcesTypes": [ "DEDICATED_RESOURCES" ], "supportedInputStorageFormats": [ "jsonl", "bigquery", "csv", "tf-record", "tf-record-gzip", "file-list" ], "supportedOutputStorageFormats": [ "jsonl", "bigquery" ], "createTime": "2022-08-04T01:26:50.402637Z", "updateTime": "2022-08-04T01:26:52.926706Z", "etag": "AMEw9yM4rd6hO-VtoplqIeRMGz4t2Qa_JhGFUrlvxwDoGkPy8LWau6DkyWWf0VBAms9Y", "supportedExportFormats": [ { "id": "custom-trained", "exportableContents": [ "ARTIFACT" ] } ], "artifactUri": "gs://tribbute-ml-central/ch9/trained_model/export/flights_20220804-012017/", "versionId": "1", "versionAliases": [ "default" ], "versionCreateTime": "2022-08-04T01:26:50.402637Z", "versionUpdateTime": "2022-08-04T01:26:52.926706Z" }, { "name": "projects/591020730428/locations/us-central1/models/842784458783326208", "displayName": "flights-20220804-012530", "predictSchemata": {}, "containerSpec": { "imageUri": "us-docker.pkg.dev/vertex-ai/prediction/tf2-cpu.2-6:latest" }, "supportedDeploymentResourcesTypes": [ "DEDICATED_RESOURCES", "SHARED_RESOURCES" ], "supportedInputStorageFormats": [ "jsonl", "bigquery", "csv", "tf-record", "tf-record-gzip", "file-list" ], "supportedOutputStorageFormats": [ "jsonl", "bigquery" ], "createTime": "2022-08-04T01:25:39.057762Z", "updateTime": "2022-08-04T01:25:41.645650Z", "etag": "AMEw9yOJYffsNNc6kJ8mW3bmtVQhhrTYoYJIngsLlvxhdhjclPNdo-cDTJyrsPqI0W0B", "supportedExportFormats": [ { "id": "custom-trained", "exportableContents": [ "ARTIFACT" ] } ], "artifactUri": "gs://tribbute-ml-central/ch9/trained_model/export/flights_20220804-012017/", "versionId": "1", "versionAliases": [ "default" ], "versionCreateTime": "2022-08-04T01:25:39.057762Z", "versionUpdateTime": "2022-08-04T01:25:41.645650Z" }, { "name": "projects/591020730428/locations/us-central1/models/8432475730809454592", "displayName": "flights-20220804-012417", "predictSchemata": {}, "containerSpec": { "imageUri": "us-docker.pkg.dev/vertex-ai/prediction/tf2-cpu.2-6:latest" }, "supportedDeploymentResourcesTypes": [ "DEDICATED_RESOURCES", "SHARED_RESOURCES" ], "supportedInputStorageFormats": [ "jsonl", "bigquery", "csv", "tf-record", "tf-record-gzip", "file-list" ], "supportedOutputStorageFormats": [ "jsonl", "bigquery" ], "createTime": "2022-08-04T01:24:26.339107Z", "updateTime": "2022-08-04T01:24:28.949204Z", "etag": "AMEw9yOBQ4swa06T9UIAMDEO9iI7SKKcSi26CgPQ3pjBh8CHgd36cNk1OZD1-gg0MUY1", "supportedExportFormats": [ { "id": "custom-trained", "exportableContents": [ "ARTIFACT" ] } ], "artifactUri": "gs://tribbute-ml-central/ch9/trained_model/export/flights_20220804-012017/", "versionId": "1", "versionAliases": [ "default" ], "versionCreateTime": "2022-08-04T01:24:26.339107Z", "versionUpdateTime": "2022-08-04T01:24:28.949204Z" }, { "name": "projects/591020730428/locations/us-central1/models/8810778099508576256", "displayName": "flights-20220804-012255", "predictSchemata": {}, "containerSpec": { "imageUri": "us-docker.pkg.dev/vertex-ai/prediction/tf2-cpu.2-6:latest" }, "supportedDeploymentResourcesTypes": [ "DEDICATED_RESOURCES", "SHARED_RESOURCES" ], "supportedInputStorageFormats": [ "jsonl", "bigquery", "csv", "tf-record", "tf-record-gzip", "file-list" ], "supportedOutputStorageFormats": [ "jsonl", "bigquery" ], "createTime": "2022-08-04T01:23:04.426138Z", "updateTime": "2022-08-04T01:23:06.954014Z", "etag": "AMEw9yPd43l0ruUmuukBzwK4j8mfL312w_QfK_XeQQCj77lwK3xmApR3i0RRYxT74pH9", "supportedExportFormats": [ { "id": "custom-trained", "exportableContents": [ "ARTIFACT" ] } ], "artifactUri": "gs://tribbute-ml-central/ch9/trained_model/export/flights_20220804-012017/", "versionId": "1", "versionAliases": [ "default" ], "versionCreateTime": "2022-08-04T01:23:04.426138Z", "versionUpdateTime": "2022-08-04T01:23:06.954014Z" }, { "name": "projects/591020730428/locations/us-central1/models/3820789712382066688", "displayName": "flights-20220804-012133", "predictSchemata": {}, "containerSpec": { "imageUri": "us-docker.pkg.dev/vertex-ai/prediction/tf2-cpu.2-6:latest" }, "supportedDeploymentResourcesTypes": [ "DEDICATED_RESOURCES", "SHARED_RESOURCES" ], "supportedInputStorageFormats": [ "jsonl", "bigquery", "csv", "tf-record", "tf-record-gzip", "file-list" ], "supportedOutputStorageFormats": [ "jsonl", "bigquery" ], "createTime": "2022-08-04T01:21:39.996004Z", "updateTime": "2022-08-04T01:21:42.602720Z", "etag": "AMEw9yO2F-RCkQUJE4gkcZ6EYkiHday9IsNsBJEl7yCpumOoN2nj4M0RURvD7dFgFg9y", "supportedExportFormats": [ { "id": "custom-trained", "exportableContents": [ "ARTIFACT" ] } ], "artifactUri": "gs://tribbute-ml-central/ch9/trained_model/export/flights_20220804-012017/", "versionId": "1", "versionAliases": [ "default" ], "versionCreateTime": "2022-08-04T01:21:39.996004Z", "versionUpdateTime": "2022-08-04T01:21:42.602720Z" }, { "name": "projects/591020730428/locations/us-central1/models/738075767446962176", "displayName": "flights-20220804-012101", "predictSchemata": {}, "containerSpec": { "imageUri": "us-docker.pkg.dev/vertex-ai/prediction/tf2-cpu.2-9:latest" }, "supportedDeploymentResourcesTypes": [ "DEDICATED_RESOURCES" ], "supportedInputStorageFormats": [ "jsonl", "bigquery", "csv", "tf-record", "tf-record-gzip", "file-list" ], "supportedOutputStorageFormats": [ "jsonl", "bigquery" ], "createTime": "2022-08-04T01:21:08.743501Z", "updateTime": "2022-08-04T01:21:11.421906Z", "etag": "AMEw9yNtBvF2fcwdOSdeqc9D1iPWHKikNFJMgQaDaicyW_YlxcbQodkjobhyRVubZF0E", "supportedExportFormats": [ { "id": "custom-trained", "exportableContents": [ "ARTIFACT" ] } ], "artifactUri": "gs://tribbute-ml-central/ch9/trained_model/export/flights_20220804-012017/", "versionId": "1", "versionAliases": [ "default" ], "versionCreateTime": "2022-08-04T01:21:08.743501Z", "versionUpdateTime": "2022-08-04T01:21:11.421906Z" }, { "name": "projects/591020730428/locations/us-central1/models/3622631328777764864", "displayName": "flights-20220803-223154", "predictSchemata": {}, "containerSpec": { "imageUri": "us-docker.pkg.dev/vertex-ai/prediction/tf2-cpu.2-9:latest" }, "supportedDeploymentResourcesTypes": [ "DEDICATED_RESOURCES" ], "supportedInputStorageFormats": [ "jsonl", "bigquery", "csv", "tf-record", "tf-record-gzip", "file-list" ], "supportedOutputStorageFormats": [ "jsonl", "bigquery" ], "createTime": "2022-08-03T22:32:04.481570Z", "updateTime": "2022-08-03T22:32:07.084890Z", "etag": "AMEw9yM1z5M_3p1RJ3E-Xdm0q8zAALfdkLk0xr8ydSFn_TaVEFb3bCcERIXpKu1S6Ag=", "supportedExportFormats": [ { "id": "custom-trained", "exportableContents": [ "ARTIFACT" ] } ], "artifactUri": "gs://tribbute-ml-central/ch9/trained_model/export/flights_20220803-222758/", "versionId": "1", "versionAliases": [ "default" ], "versionCreateTime": "2022-08-03T22:32:04.481570Z", "versionUpdateTime": "2022-08-03T22:32:07.084890Z" }, { "name": "projects/591020730428/locations/us-central1/models/1316788319564070912", "displayName": "flights-20220803-223002", "predictSchemata": {}, "containerSpec": { "imageUri": "us-docker.pkg.dev/vertex-ai/prediction/tf2-cpu.2-9:latest" }, "supportedDeploymentResourcesTypes": [ "DEDICATED_RESOURCES" ], "supportedInputStorageFormats": [ "jsonl", "bigquery", "csv", "tf-record", "tf-record-gzip", "file-list" ], "supportedOutputStorageFormats": [ "jsonl", "bigquery" ], "createTime": "2022-08-03T22:30:12.377079Z", "updateTime": "2022-08-03T22:30:14.993220Z", "etag": "AMEw9yOMfSljOWQw5aAZ7WKrLwmFQDgLqkiBBoMXg4s3MyG_5x9Qnv4BhoB5sM3dAxjy", "supportedExportFormats": [ { "id": "custom-trained", "exportableContents": [ "ARTIFACT" ] } ], "artifactUri": "gs://tribbute-ml-central/ch9/trained_model/export/flights_20220803-222758/", "versionId": "1", "versionAliases": [ "default" ], "versionCreateTime": "2022-08-03T22:30:12.377079Z", "versionUpdateTime": "2022-08-03T22:30:14.993220Z" }, { "name": "projects/591020730428/locations/us-central1/models/4988910865731289088", "displayName": "flights-20220803-222904", "predictSchemata": {}, "containerSpec": { "imageUri": "us-docker.pkg.dev/vertex-ai/prediction/tf2-cpu.2-9:latest" }, "supportedDeploymentResourcesTypes": [ "DEDICATED_RESOURCES" ], "supportedInputStorageFormats": [ "jsonl", "bigquery", "csv", "tf-record", "tf-record-gzip", "file-list" ], "supportedOutputStorageFormats": [ "jsonl", "bigquery" ], "createTime": "2022-08-03T22:29:11.348035Z", "updateTime": "2022-08-03T22:29:13.961294Z", "etag": "AMEw9yMsc4_EAziRd8lPcZyeor2W90ShMn0WfFLP4_Axane_7HhdLArIKJGN6kKAdZdD", "supportedExportFormats": [ { "id": "custom-trained", "exportableContents": [ "ARTIFACT" ] } ], "artifactUri": "gs://tribbute-ml-central/ch9/trained_model/export/flights_20220803-222758/", "versionId": "1", "versionAliases": [ "default" ], "versionCreateTime": "2022-08-03T22:29:11.348035Z", "versionUpdateTime": "2022-08-03T22:29:13.961294Z" }, { "name": "projects/591020730428/locations/us-central1/models/4445664160679723008", "displayName": "flights-20220803-222609", "predictSchemata": {}, "containerSpec": { "imageUri": "us-docker.pkg.dev/vertex-ai/prediction/tf2-cpu.2-9:latest" }, "supportedDeploymentResourcesTypes": [ "DEDICATED_RESOURCES" ], "supportedInputStorageFormats": [ "jsonl", "bigquery", "csv", "tf-record", "tf-record-gzip", "file-list" ], "supportedOutputStorageFormats": [ "jsonl", "bigquery" ], "createTime": "2022-08-03T22:26:16.737076Z", "updateTime": "2022-08-03T22:26:19.654852Z", "etag": "AMEw9yO6zVO9G5Vo8QM5n3Ao3s3n6qCCTklmLWlSIwgFOaD-PXqGbfoi5h1DodIlAlox", "supportedExportFormats": [ { "id": "custom-trained", "exportableContents": [ "ARTIFACT" ] } ], "artifactUri": "gs://tribbute-ml-central/ch9/trained_model/export/flights_20220803-212637/", "versionId": "1", "versionAliases": [ "default" ], "versionCreateTime": "2022-08-03T22:26:16.737076Z", "versionUpdateTime": "2022-08-03T22:26:19.654852Z" }, { "name": "projects/591020730428/locations/us-central1/models/7088151242039361536", "displayName": "flights-20220803-222539", "predictSchemata": {}, "containerSpec": { "imageUri": "us-docker.pkg.dev/vertex-ai/prediction/tf2-cpu.2-9:latest" }, "supportedDeploymentResourcesTypes": [ "DEDICATED_RESOURCES" ], "supportedInputStorageFormats": [ "jsonl", "bigquery", "csv", "tf-record", "tf-record-gzip", "file-list" ], "supportedOutputStorageFormats": [ "jsonl", "bigquery" ], "createTime": "2022-08-03T22:25:47.111845Z", "updateTime": "2022-08-03T22:25:49.675406Z", "etag": "AMEw9yOM6BuUFV_OLwkVdELeNw3i1HHVIMB0nqKJ0ZZV6P9xbpkiGy-xbYNQ4B87l5Ys", "supportedExportFormats": [ { "id": "custom-trained", "exportableContents": [ "ARTIFACT" ] } ], "artifactUri": "gs://tribbute-ml-central/ch9/trained_model/export/flights_20220803-212637/", "versionId": "1", "versionAliases": [ "default" ], "versionCreateTime": "2022-08-03T22:25:47.111845Z", "versionUpdateTime": "2022-08-03T22:25:49.675406Z" }, { "name": "projects/591020730428/locations/us-central1/models/377224847303901184", "displayName": "flights-20220803-222459", "predictSchemata": {}, "containerSpec": { "imageUri": "us-docker.pkg.dev/vertex-ai/prediction/tf2-cpu.2-9:latest" }, "supportedDeploymentResourcesTypes": [ "DEDICATED_RESOURCES" ], "supportedInputStorageFormats": [ "jsonl", "bigquery", "csv", "tf-record", "tf-record-gzip", "file-list" ], "supportedOutputStorageFormats": [ "jsonl", "bigquery" ], "createTime": "2022-08-03T22:25:07.431618Z", "updateTime": "2022-08-03T22:25:10.129002Z", "etag": "AMEw9yNW87y8hoSOnoReSw0BiZoaUAIv7tp1ph1d1MRd3vAUQkLsIbR77bmTAOchw_U=", "supportedExportFormats": [ { "id": "custom-trained", "exportableContents": [ "ARTIFACT" ] } ], "artifactUri": "gs://tribbute-ml-central/ch9/trained_model/export/flights_20220803-212637/", "versionId": "1", "versionAliases": [ "default" ], "versionCreateTime": "2022-08-03T22:25:07.431618Z", "versionUpdateTime": "2022-08-03T22:25:10.129002Z" }, { "name": "projects/591020730428/locations/us-central1/models/3915365304556847104", "displayName": "flights-20220803-222330", "predictSchemata": {}, "containerSpec": { "imageUri": "us-docker.pkg.dev/vertex-ai/prediction/tf2-cpu.2-6:latest" }, "supportedDeploymentResourcesTypes": [ "DEDICATED_RESOURCES", "SHARED_RESOURCES" ], "supportedInputStorageFormats": [ "jsonl", "bigquery", "csv", "tf-record", "tf-record-gzip", "file-list" ], "supportedOutputStorageFormats": [ "jsonl", "bigquery" ], "createTime": "2022-08-03T22:23:37.884370Z", "updateTime": "2022-08-03T22:23:40.524363Z", "etag": "AMEw9yMVm_CE9bftw-qceZk8LeHaNhdLx-cgTA5PjZ3e07_BFqwRwgPd3ty_3xlnE82v", "supportedExportFormats": [ { "id": "custom-trained", "exportableContents": [ "ARTIFACT" ] } ], "artifactUri": "gs://tribbute-ml-central/ch9/trained_model/export/flights_20220803-212637/", "versionId": "1", "versionAliases": [ "default" ], "versionCreateTime": "2022-08-03T22:23:37.884370Z", "versionUpdateTime": "2022-08-03T22:23:40.524363Z" }, { "name": "projects/591020730428/locations/us-central1/models/6414863097747472384", "displayName": "flights-20220803-221346", "predictSchemata": {}, "containerSpec": { "imageUri": "us-docker.pkg.dev/vertex-ai/prediction/tf2-cpu.2-9:latest" }, "supportedDeploymentResourcesTypes": [ "DEDICATED_RESOURCES" ], "supportedInputStorageFormats": [ "jsonl", "bigquery", "csv", "tf-record", "tf-record-gzip", "file-list" ], "supportedOutputStorageFormats": [ "jsonl", "bigquery" ], "createTime": "2022-08-03T22:14:03.490710Z", "updateTime": "2022-08-03T22:14:05.659596Z", "etag": "AMEw9yPFHHccVFPzhIe7ZluZ7E39sSJF4ViqODAl1jpewlOLy-UJjQcFTIbNk3yiJtmT", "supportedExportFormats": [ { "id": "custom-trained", "exportableContents": [ "ARTIFACT" ] } ], "artifactUri": "gs://tribbute-ml-central/ch9/trained_model/export/flights_20220803-212637/", "versionId": "1", "versionAliases": [ "default" ], "versionCreateTime": "2022-08-03T22:14:03.490710Z", "versionUpdateTime": "2022-08-03T22:14:05.659596Z" } ] } " as type GoogleCloudAiplatformV1ListModelsResponse: Repeated values for field supportedDeploymentResourcesTypes may not be None |
@lakshmanok I found out why I kept getting different versions. For some reason the code to delete any existing models doesn't work. The code to get MODEL_ID: Once I fixed that I stopped getting multiple models but I still had a problem. Here is the error code that I have now (I tried both 2-6 and 2-9 but they give the same error message but with different version):
The problem seems to be the docker image, but not sure where the image is coming from. Thanks, |
These are the supported docker images in 2.9
Is the name that the script generates correct?
thanks,
Lak
…On Wed, Aug 3, 2022, 7:35 PM Chris Shin ***@***.***> wrote:
@lakshmanok <https://github.com/lakshmanok> I found out why I kept
getting different versions. For some reason the code to delete any existing
models doesn't work. So I had to manually delete the models that were
registered (and there were many).
Once I fixed that I stopped getting multiple models but I still had a
problem. Here is the error code that I have now (I tried both 2-6 and 2-9
but they give the same error message but with different version):
Using endpoint [https://us-central1-aiplatform.googleapis.com/]
WARNING: The following filter keys were not present in any resource : display_name
Using endpoint [https://us-central1-aiplatform.googleapis.com/]
Waiting for operation [1000784623292121088]...
.....done.
Created Vertex AI endpoint: projects/591020730428/locations/us-central1/endpoints/7596789719095050240.
Using endpoint [https://us-central1-aiplatform.googleapis.com/]
Using endpoint [https://us-central1-aiplatform.googleapis.com/]
WARNING: The following filter keys were not present in any resource : display_name
Using endpoint [https://us-central1-aiplatform.googleapis.com/]
Waiting for operation [5612470641719508992]...
....................done.
Using endpoint [https://us-central1-aiplatform.googleapis.com/]
Using endpoint [https://us-central1-aiplatform.googleapis.com/]
ERROR: (gcloud.ai.endpoints.deploy-model) INVALID_ARGUMENT: Invalid image "us-docker.pkg.dev/vertex-ai/prediction/tf2-cpu.2-9:latest" for deployment. Please use a Model with a valid image.
---------------------------------------------------------------------------
CalledProcessError Traceback (most recent call last)
/tmp/ipykernel_1/1002185504.py in <module>
----> 1 get_ipython().run_cell_magic('bash', '', '\nTIMESTAMP=$(date +%Y%m%d-%H%M%S)\nMODEL_NAME=${ENDPOINT_NAME}-${TIMESTAMP}\nEXPORT_PATH=$(gsutil ls ${OUTDIR}/export | tail -1)\necho $EXPORT_PATH\n\nif [[ $(gcloud ai endpoints list --region=$REGION \\\n --format=\'value(DISPLAY_NAME)\' --filter=display_name=${ENDPOINT_NAME}) ]]; then\n echo "Endpoint for $MODEL_NAME already exists"\nelse\n # create model\n echo "Creating Endpoint for $MODEL_NAME"\n gcloud ai endpoints create --region=${REGION} --display-name=${ENDPOINT_NAME}\nfi\n\nENDPOINT_ID=$(gcloud ai endpoints list --region=$REGION \\\n --format=\'value(ENDPOINT_ID)\' --filter=display_name=${ENDPOINT_NAME})\necho "ENDPOINT_ID=$ENDPOINT_ID"\n\n# delete any existing models with this name\nfor MODEL_ID in $(gcloud ai models list --region=$REGION --format=\'value(MODEL_ID)\' --filter=display_name=${MODEL_NAME}); do\n echo "Deleting existing $MODEL_NAME ... $MODEL_ID "\n gcloud ai models delete --region=$REGION $MODEL_ID\ndone\n\n# upload model\ngcloud beta ai models upload --region=$REGION --display-name=$MODEL_NAME \\\n --container-image-uri=us-docker.pkg.dev/vertex-ai/prediction/tf2-cpu.${TF_VERSION}:latest <http://us-docker.pkg.dev/vertex-ai/prediction/tf2-cpu.$%7BTF_VERSION%7D:latest> \\\n --artifact-uri=$EXPORT_PATH\nMODEL_ID=$(gcloud ai models list --region=$REGION --format=\'value(MODEL_ID)\' --filter=display_name=${MODEL_NAME})\necho "MODEL_ID=$MODEL_ID"\n\n# deploy model to endpoint\ngcloud ai endpoints deploy-model $ENDPOINT_ID \\\n --region=$REGION \\\n --model=$MODEL_ID \\\n --display-name=$MODEL_NAME \\\n --machine-type=n1-standard-2 \\\n --min-replica-count=1 \\\n --max-replica-count=1 \\\n --traffic-split=0=100\n\n')
/opt/conda/lib/python3.7/site-packages/IPython/core/interactiveshell.py in run_cell_magic(self, magic_name, line, cell)
2470 with self.builtin_trap:
2471 args = (magic_arg_s, cell)
-> 2472 result = fn(*args, **kwargs)
2473 return result
2474
/opt/conda/lib/python3.7/site-packages/IPython/core/magics/script.py in named_script_magic(line, cell)
140 else:
141 line = script
--> 142 return self.shebang(line, cell)
143
144 # write a basic docstring:
/opt/conda/lib/python3.7/site-packages/decorator.py in fun(*args, **kw)
230 if not kwsyntax:
231 args, kw = fix(args, kw, sig)
--> 232 return caller(func, *(extras + args), **kw)
233 fun.__name__ = func.__name__
234 fun.__doc__ = func.__doc__
/opt/conda/lib/python3.7/site-packages/IPython/core/magic.py in <lambda>(f, *a, **k)
185 # but it's overkill for just that one bit of state.
186 def magic_deco(arg):
--> 187 call = lambda f, *a, **k: f(*a, **k)
188
189 if callable(arg):
/opt/conda/lib/python3.7/site-packages/IPython/core/magics/script.py in shebang(self, line, cell)
243 sys.stderr.flush()
244 if args.raise_error and p.returncode!=0:
--> 245 raise CalledProcessError(p.returncode, cell, output=out, stderr=err)
246
247 def _run_script(self, p, cell, to_close):
CalledProcessError: Command 'b'\nTIMESTAMP=$(date +%Y%m%d-%H%M%S)\nMODEL_NAME=${ENDPOINT_NAME}-${TIMESTAMP}\nEXPORT_PATH=$(gsutil ls ${OUTDIR}/export | tail -1)\necho $EXPORT_PATH\n\nif [[ $(gcloud ai endpoints list --region=$REGION \\\n --format=\'value(DISPLAY_NAME)\' --filter=display_name=${ENDPOINT_NAME}) ]]; then\n echo "Endpoint for $MODEL_NAME already exists"\nelse\n # create model\n echo "Creating Endpoint for $MODEL_NAME"\n gcloud ai endpoints create --region=${REGION} --display-name=${ENDPOINT_NAME}\nfi\n\nENDPOINT_ID=$(gcloud ai endpoints list --region=$REGION \\\n --format=\'value(ENDPOINT_ID)\' --filter=display_name=${ENDPOINT_NAME})\necho "ENDPOINT_ID=$ENDPOINT_ID"\n\n# delete any existing models with this name\nfor MODEL_ID in $(gcloud ai models list --region=$REGION --format=\'value(MODEL_ID)\' --filter=display_name=${MODEL_NAME}); do\n echo "Deleting existing $MODEL_NAME ... $MODEL_ID "\n gcloud ai models delete --region=$REGION $MODEL_ID\ndone\n\n# upload model\ngcloud beta ai models upload --region=$REGION --display-name=$MODEL_NAME \\\n --container-image-uri=us-docker.pkg.dev/vertex-ai/prediction/tf2-cpu.${TF_VERSION}:latest <http://us-docker.pkg.dev/vertex-ai/prediction/tf2-cpu.$%7BTF_VERSION%7D:latest> \\\n --artifact-uri=$EXPORT_PATH\nMODEL_ID=$(gcloud ai models list --region=$REGION --format=\'value(MODEL_ID)\' --filter=display_name=${MODEL_NAME})\necho "MODEL_ID=$MODEL_ID"\n\n# deploy model to endpoint\ngcloud ai endpoints deploy-model $ENDPOINT_ID \\\n --region=$REGION \\\n --model=$MODEL_ID \\\n --display-name=$MODEL_NAME \\\n --machine-type=n1-standard-2 \\\n --min-replica-count=1 \\\n --max-replica-count=1 \\\n --traffic-split=0=100\n\n'' returned non-zero exit status 1.
The problem seems to be the docker image, but not sure where the image is
coming from.
Thanks,
Chris
—
Reply to this email directly, view it on GitHub
<#154 (comment)>,
or unsubscribe
<https://github.com/notifications/unsubscribe-auth/AANJPZ7RYC7WNRSMF7CYWETVXMT5LANCNFSM55QPAVDA>
.
You are receiving this because you were mentioned.Message ID:
***@***.***>
|
@lakshmanok Do you mean the model? The name of the Model is "flights-20220804-023315" and the endpoint is named "flights". I tried to deploy by going to Model Registry within Vertex AI and tried to manually deploy the model, but it still returns same error (actually this one uses different image but still doesn't work):
|
Chris,
Please see this page for tensorflow versions that are supported by vertex
AI prediction:
https://cloud.google.com/vertex-ai/docs/predictions/pre-built-containers
Notice that 2.9 is not (yet?) supported. This is usually a matter of time.
Perhaps a couple of weeks.
For now, the way to resolve this problem is to train *and* deploy using 2.8
or earlier. You can do this if you do this chapter in a Vertex AI notebook
that is built for tensorflow 2.8.
thanks,
Lak
…On Wed, Aug 3, 2022, 7:43 PM Chris Shin ***@***.***> wrote:
@lakshmanok <https://github.com/lakshmanok> Do you mean the model?
The name of the Model is "flights-20220804-023315" and the endpoint is
named "flights".
I tried to deploy by going to Model Registry within Vertex AI and tried to
manually deploy the model, but it still returns same error:
Failed to deploy model "flights-20220804-023315" to endpoint "flights".
Invalid image "us-docker.pkg.dev/vertex-ai/prediction/tf2-cpu.2-9:latest" for deployment. Please use a Model with a valid image.
Response code: 400
Status: INVALID_ARGUMENT
Tracking number: c5109049753637665
—
Reply to this email directly, view it on GitHub
<#154 (comment)>,
or unsubscribe
<https://github.com/notifications/unsubscribe-auth/AANJPZYFX2XKDO5T42HXE6TVXMU4ZANCNFSM55QPAVDA>
.
You are receiving this because you were mentioned.Message ID:
***@***.***>
|
@lakshmanok I tried using TensorFlow 2.8 but it still seem to cause issue. This is what I tried: On very top of the notebook i install TensorFlow 2.8 using Until I get to this part:
The output is:
Followed by:
For some reason, the Model ID is not retrieved. I went to check if the model was created and Thanks, |
While I was looking for a solution, I found that other people seem to be having the same issue with It seems like one of them solved issue by updating gcloud to most recent version so I tried this at the top of the notebook:
However, that still didn't seem to work for me. So far the only workaround seems to be manually deploying model to the endpoint. You can do that by creating first endpoint and uploading model. Go the Vertex AI Model Registry. Click the round hamburger dropdown menu and select "Deploy to Endpoint". You can see the progress by going to Endpoints and selecting the endpoint. |
… On Wed, Aug 3, 2022, 7:37 PM Lakshmanan Valliappa ***@***.***> wrote:
These are the supported docker images in 2.9
Is the name that the script generates correct?
thanks,
Lak
On Wed, Aug 3, 2022, 7:35 PM Chris Shin ***@***.***> wrote:
> @lakshmanok <https://github.com/lakshmanok> I found out why I kept
> getting different versions. For some reason the code to delete any existing
> models doesn't work. So I had to manually delete the models that were
> registered (and there were many).
>
> Once I fixed that I stopped getting multiple models but I still had a
> problem. Here is the error code that I have now (I tried both 2-6 and 2-9
> but they give the same error message but with different version):
>
> Using endpoint [https://us-central1-aiplatform.googleapis.com/]
> WARNING: The following filter keys were not present in any resource : display_name
> Using endpoint [https://us-central1-aiplatform.googleapis.com/]
> Waiting for operation [1000784623292121088]...
> .....done.
> Created Vertex AI endpoint: projects/591020730428/locations/us-central1/endpoints/7596789719095050240.
> Using endpoint [https://us-central1-aiplatform.googleapis.com/]
> Using endpoint [https://us-central1-aiplatform.googleapis.com/]
> WARNING: The following filter keys were not present in any resource : display_name
> Using endpoint [https://us-central1-aiplatform.googleapis.com/]
> Waiting for operation [5612470641719508992]...
> ....................done.
> Using endpoint [https://us-central1-aiplatform.googleapis.com/]
> Using endpoint [https://us-central1-aiplatform.googleapis.com/]
> ERROR: (gcloud.ai.endpoints.deploy-model) INVALID_ARGUMENT: Invalid image "us-docker.pkg.dev/vertex-ai/prediction/tf2-cpu.2-9:latest" for deployment. Please use a Model with a valid image.
> ---------------------------------------------------------------------------
> CalledProcessError Traceback (most recent call last)
> /tmp/ipykernel_1/1002185504.py in <module>
> ----> 1 get_ipython().run_cell_magic('bash', '', '\nTIMESTAMP=$(date +%Y%m%d-%H%M%S)\nMODEL_NAME=${ENDPOINT_NAME}-${TIMESTAMP}\nEXPORT_PATH=$(gsutil ls ${OUTDIR}/export | tail -1)\necho $EXPORT_PATH\n\nif [[ $(gcloud ai endpoints list --region=$REGION \\\n --format=\'value(DISPLAY_NAME)\' --filter=display_name=${ENDPOINT_NAME}) ]]; then\n echo "Endpoint for $MODEL_NAME already exists"\nelse\n # create model\n echo "Creating Endpoint for $MODEL_NAME"\n gcloud ai endpoints create --region=${REGION} --display-name=${ENDPOINT_NAME}\nfi\n\nENDPOINT_ID=$(gcloud ai endpoints list --region=$REGION \\\n --format=\'value(ENDPOINT_ID)\' --filter=display_name=${ENDPOINT_NAME})\necho "ENDPOINT_ID=$ENDPOINT_ID"\n\n# delete any existing models with this name\nfor MODEL_ID in $(gcloud ai models list --region=$REGION --format=\'value(MODEL_ID)\' --filter=display_name=${MODEL_NAME}); do\n echo "Deleting existing $MODEL_NAME ... $MODEL_ID "\n gcloud ai models delete --region=$REGION $MODEL_ID\ndone\n\n# upload model\ngcloud beta ai models upload --region=$REGION --display-name=$MODEL_NAME \\\n --container-image-uri=us-docker.pkg.dev/vertex-ai/prediction/tf2-cpu.${TF_VERSION}:latest <http://us-docker.pkg.dev/vertex-ai/prediction/tf2-cpu.$%7BTF_VERSION%7D:latest> \\\n --artifact-uri=$EXPORT_PATH\nMODEL_ID=$(gcloud ai models list --region=$REGION --format=\'value(MODEL_ID)\' --filter=display_name=${MODEL_NAME})\necho "MODEL_ID=$MODEL_ID"\n\n# deploy model to endpoint\ngcloud ai endpoints deploy-model $ENDPOINT_ID \\\n --region=$REGION \\\n --model=$MODEL_ID \\\n --display-name=$MODEL_NAME \\\n --machine-type=n1-standard-2 \\\n --min-replica-count=1 \\\n --max-replica-count=1 \\\n --traffic-split=0=100\n\n')
>
> /opt/conda/lib/python3.7/site-packages/IPython/core/interactiveshell.py in run_cell_magic(self, magic_name, line, cell)
> 2470 with self.builtin_trap:
> 2471 args = (magic_arg_s, cell)
> -> 2472 result = fn(*args, **kwargs)
> 2473 return result
> 2474
>
> /opt/conda/lib/python3.7/site-packages/IPython/core/magics/script.py in named_script_magic(line, cell)
> 140 else:
> 141 line = script
> --> 142 return self.shebang(line, cell)
> 143
> 144 # write a basic docstring:
>
> /opt/conda/lib/python3.7/site-packages/decorator.py in fun(*args, **kw)
> 230 if not kwsyntax:
> 231 args, kw = fix(args, kw, sig)
> --> 232 return caller(func, *(extras + args), **kw)
> 233 fun.__name__ = func.__name__
> 234 fun.__doc__ = func.__doc__
>
> /opt/conda/lib/python3.7/site-packages/IPython/core/magic.py in <lambda>(f, *a, **k)
> 185 # but it's overkill for just that one bit of state.
> 186 def magic_deco(arg):
> --> 187 call = lambda f, *a, **k: f(*a, **k)
> 188
> 189 if callable(arg):
>
> /opt/conda/lib/python3.7/site-packages/IPython/core/magics/script.py in shebang(self, line, cell)
> 243 sys.stderr.flush()
> 244 if args.raise_error and p.returncode!=0:
> --> 245 raise CalledProcessError(p.returncode, cell, output=out, stderr=err)
> 246
> 247 def _run_script(self, p, cell, to_close):
>
> CalledProcessError: Command 'b'\nTIMESTAMP=$(date +%Y%m%d-%H%M%S)\nMODEL_NAME=${ENDPOINT_NAME}-${TIMESTAMP}\nEXPORT_PATH=$(gsutil ls ${OUTDIR}/export | tail -1)\necho $EXPORT_PATH\n\nif [[ $(gcloud ai endpoints list --region=$REGION \\\n --format=\'value(DISPLAY_NAME)\' --filter=display_name=${ENDPOINT_NAME}) ]]; then\n echo "Endpoint for $MODEL_NAME already exists"\nelse\n # create model\n echo "Creating Endpoint for $MODEL_NAME"\n gcloud ai endpoints create --region=${REGION} --display-name=${ENDPOINT_NAME}\nfi\n\nENDPOINT_ID=$(gcloud ai endpoints list --region=$REGION \\\n --format=\'value(ENDPOINT_ID)\' --filter=display_name=${ENDPOINT_NAME})\necho "ENDPOINT_ID=$ENDPOINT_ID"\n\n# delete any existing models with this name\nfor MODEL_ID in $(gcloud ai models list --region=$REGION --format=\'value(MODEL_ID)\' --filter=display_name=${MODEL_NAME}); do\n echo "Deleting existing $MODEL_NAME ... $MODEL_ID "\n gcloud ai models delete --region=$REGION $MODEL_ID\ndone\n\n# upload model\ngcloud beta ai models upload --region=$REGION --display-name=$MODEL_NAME \\\n --container-image-uri=us-docker.pkg.dev/vertex-ai/prediction/tf2-cpu.${TF_VERSION}:latest <http://us-docker.pkg.dev/vertex-ai/prediction/tf2-cpu.$%7BTF_VERSION%7D:latest> \\\n --artifact-uri=$EXPORT_PATH\nMODEL_ID=$(gcloud ai models list --region=$REGION --format=\'value(MODEL_ID)\' --filter=display_name=${MODEL_NAME})\necho "MODEL_ID=$MODEL_ID"\n\n# deploy model to endpoint\ngcloud ai endpoints deploy-model $ENDPOINT_ID \\\n --region=$REGION \\\n --model=$MODEL_ID \\\n --display-name=$MODEL_NAME \\\n --machine-type=n1-standard-2 \\\n --min-replica-count=1 \\\n --max-replica-count=1 \\\n --traffic-split=0=100\n\n'' returned non-zero exit status 1.
>
> The problem seems to be the docker image, but not sure where the image is
> coming from.
>
> Thanks,
> Chris
>
> —
> Reply to this email directly, view it on GitHub
> <#154 (comment)>,
> or unsubscribe
> <https://github.com/notifications/unsubscribe-auth/AANJPZ7RYC7WNRSMF7CYWETVXMT5LANCNFSM55QPAVDA>
> .
> You are receiving this because you were mentioned.Message ID:
> ***@***.***
> com>
>
|
I'm getting the same error as @shinchri . Tried using his workaround of manually deploying the model to a new endpoint using the GUI but unfortunately it still doesn't work. |
James,
Could you check the TensorFlow version you are using, and the list of
supported versions at
https://cloud.google.com/vertex-ai/docs/predictions/pre-built-containers
thanks
Lak
…On Mon, Feb 13, 2023 at 4:20 AM James ***@***.***> wrote:
I'm getting the same error as @shinchri <https://github.com/shinchri> .
Tried using his workaround of manually deploying the model to a new
endpoint using the GUI but unfortunately it still doesn't work.
—
Reply to this email directly, view it on GitHub
<#154 (comment)>,
or unsubscribe
<https://github.com/notifications/unsubscribe-auth/AANJPZ6EWTAJTGHRZBO6QG3WXIRJZANCNFSM55QPAVDA>
.
You are receiving this because you were mentioned.Message ID:
***@***.***>
|
Thanks! I downgraded my TF version from 2.11 to 2.9 and that fixed the error :) Interestingly the returned predictions don't sum to 1:
whereas yours were 0.22877 and 0.76613 respectively, which sum to ~1. Any idea why that might be @lakshmanok? For anyone who needs to fix the deployment error - I opened a terminal, ran Restart the kernel, change your endpoint name (I changed mine from |
Lol. That's extremely unlikely coincidence. Note that the predictions are
for two different inputs, so there is no reason whatsoever that they should
sum to 1.
{"instances": [
{"dep_hour": 2, "is_weekday": 1, "dep_delay": 40, "taxi_out": 17,
"distance": 41, "carrier": "AS", "dep_airport_lat": 58.42527778,
"dep_airport_lon": -135.7075, "arr_airport_lat": 58.35472222,
"arr_airport_lon": -134.57472222, "origin": "GST", "dest": "JNU"},
{"dep_hour": 22, "is_weekday": 0, "dep_delay": -7, "taxi_out": 7,
"distance": 201, "carrier": "HA", "dep_airport_lat": 21.97611111,
"dep_airport_lon": -159.33888889, "arr_airport_lat": 20.89861111,
"arr_airport_lon": -156.43055556, "origin": "LIH", "dest": "OGG"}]}
…On Mon, Feb 13, 2023 at 6:44 AM James ***@***.***> wrote:
Thanks! I downgraded my TF version from 2.11 to 2.9 and that fixed the
error :)
Interestingly the returned predictions don't sum to 1:
{
"predictions": [
[
0.582659423
],
[
0.973581493
]
],
"deployedModelId": "2397282794226057216",
"model": "projects/506913857436/locations/us-central1/models/372200079164964864",
"modelDisplayName": "flights-v2-20230213-141845",
"modelVersionId": "1"
}
whereas yours were 0.22877 and 0.76613 respectively, which sum to ~1. Any
idea why that might be @lakshmanok <https://github.com/lakshmanok>?
For anyone who needs to fix the deployment error - I opened a terminal,
ran pip uninstall tensorflow to uninstall TF (also run pip show tensorflow
to check it worked) then ran pip install tensorflow==2.9.0 --user.
Restart the kernel, change your endpoint name (I changed mine from flights
to flights-v2) and the notebook should work now.
—
Reply to this email directly, view it on GitHub
<#154 (comment)>,
or unsubscribe
<https://github.com/notifications/unsubscribe-auth/AANJPZ6VYQXAVLWEWTGAEIDWXJCF5ANCNFSM55QPAVDA>
.
You are receiving this because you were mentioned.Message ID:
***@***.***>
|
Ah yes, good point! |
Chapter 9 within "Deploy model to Vertex AI" section in flights_model_tf2.ipynb. The deployment crashes when you try to execute the first cell:
When I check the Vertex Endpoints, one was created but something else seems to have gone wrong.
Output:
gs://tribbute-ml-central/ch9/trained_model/export/flights_20220803-222758/
Creating Endpoint for flights-20220803-223154
ENDPOINT_ID=974809417000157184
MODEL_ID=
followed by very long error (the error was too long so I pasted part of it):
The text was updated successfully, but these errors were encountered: