-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathperceptron.py
225 lines (185 loc) · 7.78 KB
/
perceptron.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import pandas as pd
import numpy as np
from sklearn.metrics import confusion_matrix
import seaborn as sns
import matplotlib.pyplot as plt
class Perceptron:
def __init__(self, input_size, learning_rate=0.1):
self.weights = np.random.uniform(low=-0.5, high=0.5, size=(input_size,))
self.bias = np.random.uniform(low=-0.5, high=0.5)
self.learning_rate = learning_rate
def predict(self, inputs):
weighted_sum = np.dot(inputs, self.weights) + self.bias
return 1 if weighted_sum > 0 else 0
def train(self, inputs, target):
prediction = self.predict(inputs)
error = target - prediction
# Update weights and bias using the perceptron learning rule
self.weights += self.learning_rate * error * inputs
self.bias += self.learning_rate * error
return error
class Perceptron_Layer:
def __init__(self, n_inputs, n_neurons, learning_rate):
self.accuracy = 0.0
self.accurateCount = 0
self.incorrect = 0
self.inputSize = 0
self.weights = np.random.uniform(low=-0.5, high=0.5, size=(n_inputs, n_neurons))
# 1 x n_neurons matrix
self.biases = np.ones((1, n_neurons))
self.eta = learning_rate
self.grounds = []
self.potentials = []
# takes a single input
def forward(self, input, target, adjustment):
# convert the target to a vector representation
# inputs [1x784] dot [784 x 10] + [1x10]
activationPotential = np.dot(input, self.weights)
# perceptron results
# [1 x 10] result matrix
prediction = np.argmax(activationPotential)
activationPotential = np.where(activationPotential > 0, 1, 0)
# create a truthVector t^i per equation for weight adjustment
truthVector = np.zeros(10, dtype="int")
truthVector[target] = 1
self.grounds.append(truthVector.argmax())
self.potentials.append(activationPotential.argmax())
if target == prediction:
self.accurateCount += 1
if (self.inputSize > 0):
self.accuracy = self.accurateCount / self.inputSize
else:
self.incorrect += 1
error = []
for i in range(len(truthVector)):
error.append(truthVector[i]-activationPotential[i])
np.array(error)
# for HW1 algo... single batch input... get the single array input and or access weights for tuning...
if adjustment:
# threshold check
# contains the binary classification from potential fire
self.weights = self.weights + self.eta * np.outer(error, input).T
# update weights
self.inputSize += 1
def determineAccuracy(self):
if self.inputSize == 0:
print("No input data. Accuracy set to 0.")
self.accuracy = 0.0
else:
self.accuracy = round((self.accurateCount / self.inputSize) * 100, 2)
print("Accuracy: " + str(self.accuracy) + "%")
def calculateConfusionMatrix(self):
cm = confusion_matrix(self.grounds, self.potentials)
return cm
def displayConfusionMatrix(self, cm):
print("Confusion Matrix:")
print(cm)
def plotConfusionMatrix(self, cm):
plt.figure(figsize=(8, 6))
sns.heatmap(cm, annot=True, fmt="d", cmap="Blues", cbar=False,
xticklabels=np.arange(10), yticklabels=np.arange(10))
plt.title("Confusion Matrix")
plt.xlabel("Predicted Label")
plt.ylabel("True Label")
plt.show()
def clearAccuracy(self):
self.accuracy = 0.0
self.accurateCount = 0
self.incorrect = 0
self.inputSize = 0
self.grounds = []
self.potentials = []
def plotAccuracyOverEpochs(self, accuracies):
plt.figure(figsize=(8, 6))
plt.plot(np.arange(1, len(accuracies) + 1), accuracies, marker='o')
plt.title("Accuracy Over Epochs")
plt.xlabel("Batch")
plt.ylabel("Accuracy (%)")
plt.grid(True)
plt.show()
def getTrainingLabels(dataFrame):
groundTruthLables = dataFrame['label'].to_numpy()
# drop the labels of the data and then divide each array
return groundTruthLables
def getTrainingInputs(dataFrame):
inputs = dataFrame.drop("label", axis=1).to_numpy()
# divide each value vector by 255...
normalizedInputs = inputs / 255
return normalizedInputs
def shuffleTrainData():
mnist_data = pd.read_csv("mnist_train.csv")
# shuffle the contents of the dataset for training
# the prevents the perceptrons from being trained on ordering of the input data.
shuffledMnistData = mnist_data.sample(frac=1)
return shuffledMnistData
def getTesingLabels(dataFrame):
groundTruthTestLables = dataFrame['label'].to_numpy()
# drop the labels of the data and then divide each array
return groundTruthTestLables
def getTestingInputs(dataFrame):
inputs = dataFrame.drop("label", axis=1).to_numpy()
# divide each value vector by 255...
normalizedTestInputs = inputs / 255
return normalizedTestInputs
def shuffleTestData():
mnist_data = pd.read_csv("mnist_test.csv")
# shuffle the contents of the dataset for training
# the prevents the perceptrons from being trained on ordering of the input data.
shuffledMnistTestData = mnist_data.sample(frac=1)
return shuffledMnistTestData
# input 785 inputs within 10 perceptrons each input is a vector of 785 ie 28x28+1 (+1 for bias)
def main():
# read in the MNIST data:
normalizedInputs = shuffleTrainData()
y = getTrainingLabels(normalizedInputs)
X = getTrainingInputs(normalizedInputs)
# normalizedInputs = normalizedInputs.reshape((-1, 28, 28))
# confirms 28 x 28
# print(normalizedInputs.shape)
# print(normalizedInputs[0])
# Model #1 - Learning Rate 0.1
perceptronModel = Perceptron_Layer(784, 10, 0.1)
# single input iteration for the batch size of training being 1
# initial test run...
print("Epoch: 0")
print('=============================')
# Training Cycles:
# >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
accuracy_over_initial_epoch = []
for d in range(len(normalizedInputs)):
digit = X[d]
truth = y[d]
perceptronModel.forward(digit, truth, False)
accuracy_over_initial_epoch.append(perceptronModel.accuracy)
confusion_matrix_result = perceptronModel.calculateConfusionMatrix()
perceptronModel.displayConfusionMatrix(confusion_matrix_result)
perceptronModel.determineAccuracy()
# Plot confusion matrix heatmap
perceptronModel.plotConfusionMatrix(confusion_matrix_result)
perceptronModel.plotAccuracyOverEpochs(accuracy_over_initial_epoch)
perceptronModel.clearAccuracy()
# eta is 0.1%
epochModel1Count = 1
# eta 0.1
print("Training on learning rate at 0.1")
accuracy_over_epoch_w_eta = []
while epochModel1Count <= 70:
normalizedInputs = shuffleTrainData()
y = getTrainingLabels(normalizedInputs)
X = getTrainingInputs(normalizedInputs)
for b in range((len(normalizedInputs))):
digit = X[b]
truth = y[b]
perceptronModel.forward(digit, truth, True)
accuracy = perceptronModel.accuracy
accuracy_over_epoch_w_eta.append(perceptronModel.accuracy)
epochModel1Count += 1
# clean up for 0.1 eta
confusion_matrix_result = perceptronModel.calculateConfusionMatrix()
perceptronModel.displayConfusionMatrix(confusion_matrix_result)
# Plot confusion matrix heatmap
perceptronModel.plotConfusionMatrix(confusion_matrix_result)
perceptronModel.determineAccuracy()
perceptronModel.plotAccuracyOverEpochs(accuracy_over_epoch_w_eta)
perceptronModel.clearAccuracy()
main()