-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathACM_EqualSphere.f90
123 lines (116 loc) · 4.01 KB
/
ACM_EqualSphere.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
!********************************************************************
!
! Purpose::
! 1) Provide a much cut down module to perform partition of the
! surface of a sphere into regions of equal area.
!
! References:
! 1) Leopardi P. A partition of the unit sphere into regions of
! equal area and small diameter[J]. Electronic Transactions on
! Numerical Analysis Etna, 2006, 25(1):2006.
! 2) http://eqsp.sourceforge.net/
! 3) https://sourceforge.net/projects/eqsp/
!
! Author: Zheng Gong
! Date: 2021-08-13
!
!********************************************************************
module ACM_EqualSphere
implicit none
private
integer,parameter::RK=8
public::eq_sphere
contains
!******************************************************************
! eq_sphere
!******************************************************************
subroutine eq_sphere(Point)
implicit none
real(RK),dimension(:,:),intent(out)::Point
! locals
integer,dimension(:),allocatable::n_regions
integer::k,m,nMarker,nColumn,n_collars,nCount,n_top,n_bot
real(RK),parameter::PI=3.141592653589793238462643383279502884_RK
real(RK)::area_cap,c_polar,discrepancy,a_fitting,area_top,area_bot,offset
real(RK)::rx,ry,rz,rnorm,r_regions,a_top,a_bot,area_tot,Psi,Phi,aTemp,mTemp
nMarker=size(Point,1)
nColumn=size(Point,2)
if(nMarker<1 .or. nColumn/=3) then
print*,"Error in eq_sphere, nMarker or nColumn wrong:",nMarker,nColumn; stop
endif
Point(1,:)=(/0.0_RK, 0.0_RK, 1.0_RK/); if(nMarker==1)return
Point(2,:)=(/1.0_RK, 0.0_RK, 0.0_RK/);
Point(nMarker,:)=(/0.0_RK, 0.0_RK,-1.0_RK/); if(nMarker< 4)return
area_cap=4.0_RK*PI/real(nMarker,RK)
c_polar =2.0_RK*asin(sqrt(area_cap/(4.0_RK*PI)))
n_collars= max(1,nint((PI-2.0_RK*c_polar)/sqrt(area_cap)))
allocate(n_regions(n_collars+2))
n_regions(1)=1;n_regions(n_collars+2)=1
discrepancy = 0.0_RK; area_top=area_cap
a_fitting = (PI-2.0_RK*c_polar)/real(n_collars,RK)
do k=1,n_collars
area_bot=c_polar+real(k,RK)*a_fitting
area_bot=sin(0.5_RK*area_bot)
area_bot=4*PI*area_bot*area_bot
r_regions=(area_bot-area_top)/area_cap
area_top=area_bot
n_regions(k+1)=nint(r_regions+discrepancy)
discrepancy=discrepancy+r_regions-n_regions(k+1)
enddo
nCount= 2; offset= 0.0_RK
a_top = c_polar; area_tot=area_cap
do k=1,n_collars
n_top=n_regions(k+1)
n_bot=n_regions(k+2)
area_tot=area_tot+n_top*area_cap
a_bot= 2.0_RK*asin(sqrt(area_tot/(4.0_RK*PI)))
Psi= 0.5_RK*(a_top+a_bot); a_top=a_bot
do m=1,n_top
aTemp=real(2*m-1,RK)*PI/real(n_top,RK) +2.0_RK*PI*offset
Phi = aTemp -2.0*PI*floor(aTemp/(2.0*PI))
rx=sin(Psi)*cos(Phi)
ry=sin(Psi)*sin(Phi)
rz=cos(Psi)
rnorm=sqrt(rx*rx+ry*ry+rz*rz)
Point(nCount,:)=(/rx,ry,rz/)/rnorm
nCount=nCount+1
enddo
offset=offset+real(n_top-n_bot+gcd(n_top,n_bot),RK)/real(2*n_top*n_bot,RK)
offset=offset-floor(offset)
enddo
if(nMarker /= nCount) then
print*,'Error in eq_sphere: nMarker /= nCount',nMarker,nCount; stop
endif
end subroutine eq_sphere
!******************************************************************
! gcd: Greatest Common Divisor
!******************************************************************
function gcd(m1,n1) result(r)
implicit none
integer,intent(in)::m1,n1
integer::m,n,r
m=m1; n=n1
do
r=mod(m,n); m=n; n=r
if(r==0)exit
enddo
r=m
end function gcd
end module ACM_EqualSphere
!******************************************************************
! Main program
!******************************************************************
program main
use ACM_EqualSphere
implicit none
integer::k,nMarker
real(8),dimension(:,:),allocatable::Point
print*,'nMarker='
read*,nMarker
allocate(Point(nMarker,3))
call eq_sphere(Point)
print*,' nid, x, y, z'
do k=1,nMarker
print*,k,Point(k,:)
enddo
end program main