forked from DeepLabCut/DeepLabCut
-
Notifications
You must be signed in to change notification settings - Fork 0
/
testscript.py
433 lines (361 loc) · 12.8 KB
/
testscript.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
#
# DeepLabCut Toolbox (deeplabcut.org)
# © A. & M.W. Mathis Labs
# https://github.com/DeepLabCut/DeepLabCut
#
# Please see AUTHORS for contributors.
# https://github.com/DeepLabCut/DeepLabCut/blob/master/AUTHORS
#
# Licensed under GNU Lesser General Public License v3.0
#
"""
Created on Tue Oct 2 13:56:11 2018
@author: alex
DEVELOPERS:
This script tests various functionalities in an automatic way.
It should take about 3:30 minutes to run this in a CPU.
It should take about 1:30 minutes on a GPU (incl. downloading the ResNet weights)
It produces nothing of interest scientifically.
"""
import os
import deeplabcut
import platform
import scipy.io as sio
import subprocess
from pathlib import Path
import numpy as np
import pandas as pd
from deeplabcut.utils import auxiliaryfunctions
import random
USE_SHELVE = random.choice([True, False])
MODELS = ["resnet_50", "efficientnet-b0", "mobilenet_v2_0.35"]
if __name__ == "__main__":
task = "TEST" # Enter the name of your experiment Task
scorer = "Alex" # Enter the name of the experimenter/labeler
print("Imported DLC!")
basepath = os.path.dirname(os.path.realpath(__file__))
videoname = "reachingvideo1"
video = [
os.path.join(
basepath, "Reaching-Mackenzie-2018-08-30", "videos", videoname + ".avi"
)
]
# For testing a color video:
# videoname='baby4hin2min'
# video=[os.path.join('/home/alex/Desktop/Data',videoname+'.mp4')]
# to test destination folder:
DESTFOLDER = basepath
DESTFOLDER = None
NET = random.choice(MODELS)
augmenter_type = "default" # = imgaug!!
augmenter_type2 = "scalecrop"
if platform.system() == "Darwin" or platform.system() == "Windows":
print("On Windows/OSX tensorpack is not tested by default.")
augmenter_type3 = "imgaug"
else:
augmenter_type3 = "tensorpack" # Does not work on WINDOWS
N_ITER = 5
print("CREATING PROJECT")
path_config_file = deeplabcut.create_new_project(
task, scorer, video, copy_videos=True
)
cfg = deeplabcut.auxiliaryfunctions.read_config(path_config_file)
cfg["numframes2pick"] = 5
cfg["pcutoff"] = 0.01
cfg["TrainingFraction"] = [0.8]
cfg["skeleton"] = [["bodypart1", "bodypart2"], ["bodypart1", "bodypart3"]]
deeplabcut.auxiliaryfunctions.write_config(path_config_file, cfg)
print("EXTRACTING FRAMES")
deeplabcut.extract_frames(path_config_file, mode="automatic", userfeedback=False)
print("CREATING-SOME LABELS FOR THE FRAMES")
frames = os.listdir(os.path.join(cfg["project_path"], "labeled-data", videoname))
# As this next step is manual, we update the labels by putting them on the diagonal (fixed for all frames)
for index, bodypart in enumerate(cfg["bodyparts"]):
columnindex = pd.MultiIndex.from_product(
[[scorer], [bodypart], ["x", "y"]], names=["scorer", "bodyparts", "coords"]
)
frame = pd.DataFrame(
100 + np.ones((len(frames), 2)) * 50 * index,
columns=columnindex,
index=[os.path.join("labeled-data", videoname, fn) for fn in frames],
)
if index == 0:
dataFrame = frame
else:
dataFrame = pd.concat([dataFrame, frame], axis=1)
dataFrame.to_csv(
os.path.join(
cfg["project_path"],
"labeled-data",
videoname,
"CollectedData_" + scorer + ".csv",
)
)
dataFrame.to_hdf(
os.path.join(
cfg["project_path"],
"labeled-data",
videoname,
"CollectedData_" + scorer + ".h5",
),
"df_with_missing",
format="table",
mode="w",
)
print("Plot labels...")
deeplabcut.check_labels(path_config_file)
print("CREATING TRAININGSET")
deeplabcut.create_training_dataset(
path_config_file, net_type=NET, augmenter_type=augmenter_type
)
# Check the training image paths are correctly stored as arrays of strings
trainingsetfolder = auxiliaryfunctions.get_training_set_folder(cfg)
datafile, _ = auxiliaryfunctions.get_data_and_metadata_filenames(
trainingsetfolder,
0.8,
1,
cfg,
)
mlab = sio.loadmat(os.path.join(cfg["project_path"], datafile))["dataset"]
num_images = mlab.shape[1]
for i in range(num_images):
imgpath = mlab[0, i][0][0]
assert len(imgpath) == 3
assert imgpath.dtype.char == "U"
posefile = os.path.join(
cfg["project_path"],
"dlc-models/iteration-"
+ str(cfg["iteration"])
+ "/"
+ cfg["Task"]
+ cfg["date"]
+ "-trainset"
+ str(int(cfg["TrainingFraction"][0] * 100))
+ "shuffle"
+ str(1),
"train/pose_cfg.yaml",
)
DLC_config = deeplabcut.auxiliaryfunctions.read_plainconfig(posefile)
DLC_config["save_iters"] = N_ITER
DLC_config["display_iters"] = 2
DLC_config["multi_step"] = [[0.001, N_ITER]]
print("CHANGING training parameters to end quickly!")
deeplabcut.auxiliaryfunctions.write_plainconfig(posefile, DLC_config)
print("TRAIN")
deeplabcut.train_network(path_config_file)
print("EVALUATE")
deeplabcut.evaluate_network(path_config_file, plotting=True)
# deeplabcut.evaluate_network(path_config_file,plotting=True,trainingsetindex=33)
print("CUT SHORT VIDEO AND ANALYZE (with dynamic cropping!)")
# Make super short video (so the analysis is quick!)
try: # you need ffmpeg command line interface
# subprocess.call(['ffmpeg','-i',video[0],'-ss','00:00:00','-to','00:00:00.4','-c','copy',newvideo])
newvideo = deeplabcut.ShortenVideo(
video[0],
start="00:00:00",
stop="00:00:01",
outsuffix="short",
outpath=os.path.join(cfg["project_path"], "videos"),
)
except: # if ffmpeg is broken/missing
print("using alternative method")
newvideo = os.path.join(cfg["project_path"], "videos", videoname + "short.mp4")
from moviepy.editor import VideoFileClip, VideoClip
clip = VideoFileClip(video[0])
clip.reader.initialize()
def make_frame(t):
return clip.get_frame(1)
newclip = VideoClip(make_frame, duration=1)
newclip.write_videofile(newvideo, fps=30)
vname = Path(newvideo).stem
deeplabcut.analyze_videos(
path_config_file,
[newvideo],
save_as_csv=True,
destfolder=DESTFOLDER,
dynamic=(True, 0.1, 5),
)
print("analyze again...")
deeplabcut.analyze_videos(
path_config_file, [newvideo], save_as_csv=True, destfolder=DESTFOLDER
)
print("CREATE VIDEO")
deeplabcut.create_labeled_video(
path_config_file, [newvideo], destfolder=DESTFOLDER, save_frames=True
)
print("Making plots")
deeplabcut.plot_trajectories(path_config_file, [newvideo], destfolder=DESTFOLDER)
print("EXTRACT OUTLIERS")
deeplabcut.extract_outlier_frames(
path_config_file,
[newvideo],
outlieralgorithm="jump",
epsilon=0,
automatic=True,
destfolder=DESTFOLDER,
)
deeplabcut.extract_outlier_frames(
path_config_file,
[newvideo],
outlieralgorithm="fitting",
automatic=True,
destfolder=DESTFOLDER,
)
file = os.path.join(
cfg["project_path"],
"labeled-data",
vname,
"machinelabels-iter" + str(cfg["iteration"]) + ".h5",
)
print("RELABELING")
DF = pd.read_hdf(file, "df_with_missing")
DLCscorer = np.unique(DF.columns.get_level_values(0))[0]
DF.columns.set_levels([scorer.replace(DLCscorer, scorer)], level=0, inplace=True)
DF = DF.drop("likelihood", axis=1, level=2)
DF.to_csv(
os.path.join(
cfg["project_path"],
"labeled-data",
vname,
"CollectedData_" + scorer + ".csv",
)
)
DF.to_hdf(
os.path.join(
cfg["project_path"],
"labeled-data",
vname,
"CollectedData_" + scorer + ".h5",
),
"df_with_missing",
)
print("MERGING")
deeplabcut.merge_datasets(path_config_file) # iteration + 1
print("CREATING TRAININGSET")
deeplabcut.create_training_dataset(
path_config_file, net_type=NET, augmenter_type=augmenter_type2
)
cfg = deeplabcut.auxiliaryfunctions.read_config(path_config_file)
posefile = os.path.join(
cfg["project_path"],
"dlc-models/iteration-"
+ str(cfg["iteration"])
+ "/"
+ cfg["Task"]
+ cfg["date"]
+ "-trainset"
+ str(int(cfg["TrainingFraction"][0] * 100))
+ "shuffle"
+ str(1),
"train/pose_cfg.yaml",
)
DLC_config = deeplabcut.auxiliaryfunctions.read_plainconfig(posefile)
DLC_config["save_iters"] = N_ITER
DLC_config["display_iters"] = 1
DLC_config["multi_step"] = [[0.001, N_ITER]]
print("CHANGING training parameters to end quickly!")
deeplabcut.auxiliaryfunctions.write_config(posefile, DLC_config)
print("TRAIN")
deeplabcut.train_network(path_config_file)
try: # you need ffmpeg command line interface
# subprocess.call(['ffmpeg','-i',video[0],'-ss','00:00:00','-to','00:00:00.4','-c','copy',newvideo])
newvideo2 = deeplabcut.ShortenVideo(
video[0],
start="00:00:00",
stop="00:00:01",
outsuffix="short2",
outpath=os.path.join(cfg["project_path"], "videos"),
)
except: # if ffmpeg is broken
newvideo2 = os.path.join(
cfg["project_path"], "videos", videoname + "short2.mp4"
)
from moviepy.editor import VideoFileClip, VideoClip
clip = VideoFileClip(video[0])
clip.reader.initialize()
def make_frame(t):
return clip.get_frame(1)
newclip = VideoClip(make_frame, duration=1)
newclip.write_videofile(newvideo2, fps=30)
vname = Path(newvideo2).stem
print("Inference with direct cropping")
deeplabcut.analyze_videos(
path_config_file,
[newvideo2],
save_as_csv=True,
destfolder=DESTFOLDER,
cropping=[0, 50, 0, 50],
allow_growth=True,
use_shelve=USE_SHELVE,
)
print("Extracting skeleton distances, filter and plot filtered output")
deeplabcut.analyzeskeleton(
path_config_file, [newvideo2], save_as_csv=True, destfolder=DESTFOLDER
)
deeplabcut.filterpredictions(path_config_file, [newvideo2])
deeplabcut.create_labeled_video(
path_config_file,
[newvideo2],
destfolder=DESTFOLDER,
displaycropped=True,
filtered=True,
)
print("Creating a Johansson video!")
deeplabcut.create_labeled_video(
path_config_file, [newvideo2], destfolder=DESTFOLDER, keypoints_only=True
)
deeplabcut.plot_trajectories(
path_config_file, [newvideo2], destfolder=DESTFOLDER, filtered=True
)
print("ALL DONE!!! - default cases without Tensorpack loader are functional.")
print("CREATING TRAININGSET for shuffle 2")
print("will be used for 3D testscript...")
# TENSORPACK could fail in WINDOWS...
deeplabcut.create_training_dataset(
path_config_file,
Shuffles=[2],
net_type=NET,
augmenter_type=augmenter_type3,
)
posefile = os.path.join(
cfg["project_path"],
"dlc-models/iteration-"
+ str(cfg["iteration"])
+ "/"
+ cfg["Task"]
+ cfg["date"]
+ "-trainset"
+ str(int(cfg["TrainingFraction"][0] * 100))
+ "shuffle"
+ str(2),
"train/pose_cfg.yaml",
)
DLC_config = deeplabcut.auxiliaryfunctions.read_plainconfig(posefile)
DLC_config["save_iters"] = 10
DLC_config["display_iters"] = 2
DLC_config["multi_step"] = [[0.001, 10]]
print("CHANGING training parameters to end quickly!")
deeplabcut.auxiliaryfunctions.write_plainconfig(posefile, DLC_config)
print("TRAINING shuffle 2, with smaller allocated memory")
deeplabcut.train_network(path_config_file, shuffle=2, allow_growth=True)
print("ANALYZING some individual frames")
deeplabcut.analyze_time_lapse_frames(
path_config_file,
os.path.join(cfg["project_path"], "labeled-data/reachingvideo1/"),
)
print("Export model...")
deeplabcut.export_model(path_config_file, shuffle=2, make_tar=False)
print("Merging datasets...")
trainIndices, testIndices = deeplabcut.mergeandsplit(
path_config_file, trainindex=0, uniform=True
)
print("Creating two identical splits...")
deeplabcut.create_training_dataset(
path_config_file,
Shuffles=[4, 5],
trainIndices=[trainIndices, trainIndices],
testIndices=[testIndices, testIndices],
)
print("ALL DONE!!! - default cases are functional.")