We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
论文的对比实验是否公平呢?
所以我觉得这样对比论文的实验是不公平的
The text was updated successfully, but these errors were encountered:
你可能误会了,STEP和之前的网络不是对等的关系。
STEP是一个预训练增强框架,它是用来提升之前STGNN在建模长期信息时的效率和准确率,以及解除对图结构的依赖的。STEP下游是需要依赖一个STGNN的,例如GWNet或者DCRNN。
论文模型下游用的GWNet,消融实验里面也测试了DCRNN以一定程度上验证通用性。
由于之前没有STEP这样的框架,我就直接和现有的STGNN对比了。
另外,现有的STGNN扩张到同样的时间窗口基本都会OOM或者运行时间特别长(我记得CNN-based方法容易OOM,RNN-based方法容易训练时间特别长),准确率也不一定有提升,甚至会降低。您可以自行测试一下。
之前也有相关的issue讨论这个问题,见GestaltCogTeam/BasicTS#71
Sorry, something went wrong.
No branches or pull requests
论文的对比实验是否公平呢?
所以我觉得这样对比论文的实验是不公平的
The text was updated successfully, but these errors were encountered: