Skip to content

Latest commit

 

History

History
54 lines (46 loc) · 3.35 KB

README.md

File metadata and controls

54 lines (46 loc) · 3.35 KB

German T5 Model Evaluation

This project documents the results of our evaluation of German T5 models.

Summarization Task - max_source_length 800 max_target_length: 96

Setup

  • train data: Swisstext
  • test data: MLSUM
  • GPUs: 4 (V100)
  • batch size / GPU: 2
  • batch size total: 8
  • warmup_ratio: 0.3
  • epochs: 10
  • max_source_length: 800
  • max_target_length: 96
  • learning rate: 5e-5 (default)

Result

Higher metric is better.

Model rouge1 rouge2 rougeL rougeLsum
google/mt5-small 16.7323 3.5629 12.65 14.6898
philschmid/test-german-t5-prompted-germanquad 15.7629 2.8154 11.898 13.9223
stefan-it/t5-base-secret package3 15.7427 2.9186 12.0224 13.8726
stefan-it/t5-base-secret epoch2-package2 15.4757 2.7629 11.978 13.5326
GermanT5/t5-base-german-3e 14.5525 2.0007 11.1617 12.9124
GermanT5/t5-efficient-oscar-german-small-el32 last CP 16.6277 3.404 12.6183 14.5772
GermanT5/t5-efficient-oscar-german-small-el32 2nd last CP 16.6886 3.4468 12.666 14.6423

Summarization Task - max_source_length 512 max_target_length: 96 epochs: 8

Setup

  • train data: Swisstext
  • test data: MLSUM
  • GPUs: 4 (V100)
  • batch size / GPU: 2
  • batch size total: 8
  • warmup_ratio: 0.3
  • epochs: 8
  • max_source_length: 512
  • max_target_length: 96
  • learning rate: 5e-5 (default)

Result

Higher metric is better.

Model rouge1 rouge2 rougeL rougeLsum
google/mt5-small (FP32) 16.0354 3.2689 12.2063 14.1225
GermanT5/t5-efficient-oscar-german-small-el32 (FP32) 16.2004 3.2372 12.3031 14.2256
GermanT5/t5-efficient-gc4-german-small-el32 (FP32) 17.1507 3.8038 13.0836 15.1671
GermanT5/t5-efficient-gc4-german-base-nl36-old (FP16) 9.3494 1.3531 7.4037 8.5473
GermanT5/t5-efficient-gc4-german-base-nl36 (DeepSpeed with ZeRO-3 Example auto config) 17.9501 3.9247 13.3758 15.6139