-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
435 lines (388 loc) · 27.1 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
# Converted to TensorFlow .caffemodel
# with the DeepLab-ResNet configuration.
# The batch normalisation layer is provided by
# the slim library (https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/slim).
from network import Network
import tensorflow as tf
class DeepLabResNetModel(Network):
def setup(self, is_training, num_classes):
'''Network definition.
Args:
is_training: whether to update the running mean and variance of the batch normalisation layer.
If the batch size is small, it is better to keep the running mean and variance of
the-pretrained model frozen.
num_classes: number of classes to predict (including background).
'''
(self.feed('data')
.conv(7, 7, 64, 2, 2, biased=False, relu=False, name='conv1')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn_conv1')
.max_pool(3, 3, 2, 2, name='pool1')
.conv(1, 1, 256, 1, 1, biased=False, relu=False, name='res2a_branch1')
.batch_normalization(is_training=is_training, activation_fn=None, name='bn2a_branch1'))
(self.feed('pool1')
.conv(1, 1, 64, 1, 1, biased=False, relu=False, name='res2a_branch2a')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn2a_branch2a')
.conv(3, 3, 64, 1, 1, biased=False, relu=False, name='res2a_branch2b')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn2a_branch2b')
.conv(1, 1, 256, 1, 1, biased=False, relu=False, name='res2a_branch2c')
.batch_normalization(is_training=is_training, activation_fn=None, name='bn2a_branch2c'))
(self.feed('bn2a_branch1',
'bn2a_branch2c')
.add(name='res2a')
.relu(name='res2a_relu')
.conv(1, 1, 64, 1, 1, biased=False, relu=False, name='res2b_branch2a')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn2b_branch2a')
.conv(3, 3, 64, 1, 1, biased=False, relu=False, name='res2b_branch2b')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn2b_branch2b')
.conv(1, 1, 256, 1, 1, biased=False, relu=False, name='res2b_branch2c')
.batch_normalization(is_training=is_training, activation_fn=None, name='bn2b_branch2c'))
(self.feed('res2a_relu',
'bn2b_branch2c')
.add(name='res2b')
.relu(name='res2b_relu')
.conv(1, 1, 64, 1, 1, biased=False, relu=False, name='res2c_branch2a')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn2c_branch2a')
.conv(3, 3, 64, 1, 1, biased=False, relu=False, name='res2c_branch2b')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn2c_branch2b')
.conv(1, 1, 256, 1, 1, biased=False, relu=False, name='res2c_branch2c')
.batch_normalization(is_training=is_training, activation_fn=None, name='bn2c_branch2c'))
(self.feed('res2b_relu',
'bn2c_branch2c')
.add(name='res2c')
.relu(name='res2c_relu')
.conv(1, 1, 512, 2, 2, biased=False, relu=False, name='res3a_branch1')
.batch_normalization(is_training=is_training, activation_fn=None, name='bn3a_branch1'))
(self.feed('res2c_relu')
.conv(1, 1, 128, 2, 2, biased=False, relu=False, name='res3a_branch2a')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn3a_branch2a')
.conv(3, 3, 128, 1, 1, biased=False, relu=False, name='res3a_branch2b')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn3a_branch2b')
.conv(1, 1, 512, 1, 1, biased=False, relu=False, name='res3a_branch2c')
.batch_normalization(is_training=is_training, activation_fn=None, name='bn3a_branch2c'))
(self.feed('bn3a_branch1',
'bn3a_branch2c')
.add(name='res3a')
.relu(name='res3a_relu')
.conv(1, 1, 128, 1, 1, biased=False, relu=False, name='res3b1_branch2a')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn3b1_branch2a')
.conv(3, 3, 128, 1, 1, biased=False, relu=False, name='res3b1_branch2b')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn3b1_branch2b')
.conv(1, 1, 512, 1, 1, biased=False, relu=False, name='res3b1_branch2c')
.batch_normalization(is_training=is_training, activation_fn=None, name='bn3b1_branch2c'))
(self.feed('res3a_relu',
'bn3b1_branch2c')
.add(name='res3b1')
.relu(name='res3b1_relu')
.conv(1, 1, 128, 1, 1, biased=False, relu=False, name='res3b2_branch2a')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn3b2_branch2a')
.conv(3, 3, 128, 1, 1, biased=False, relu=False, name='res3b2_branch2b')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn3b2_branch2b')
.conv(1, 1, 512, 1, 1, biased=False, relu=False, name='res3b2_branch2c')
.batch_normalization(is_training=is_training, activation_fn=None, name='bn3b2_branch2c'))
(self.feed('res3b1_relu',
'bn3b2_branch2c')
.add(name='res3b2')
.relu(name='res3b2_relu')
.conv(1, 1, 128, 1, 1, biased=False, relu=False, name='res3b3_branch2a')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn3b3_branch2a')
.conv(3, 3, 128, 1, 1, biased=False, relu=False, name='res3b3_branch2b')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn3b3_branch2b')
.conv(1, 1, 512, 1, 1, biased=False, relu=False, name='res3b3_branch2c')
.batch_normalization(is_training=is_training, activation_fn=None, name='bn3b3_branch2c'))
(self.feed('res3b2_relu',
'bn3b3_branch2c')
.add(name='res3b3')
.relu(name='res3b3_relu')
.conv(1, 1, 1024, 2, 2, biased=False, relu=False, name='res4a_branch1')
.batch_normalization(is_training=is_training, activation_fn=None, name='bn4a_branch1'))
### block 4
(self.feed('res3b3_relu')
.conv(1, 1, 256, 2, 2, biased=False, relu=False, name='res4a_branch2a')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4a_branch2a')
.atrous_conv(3, 3, 256, 1, padding='SAME', biased=False, relu=False, name='res4a_branch2b')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4a_branch2b')
.conv(1, 1, 1024, 1, 1, biased=False, relu=False, name='res4a_branch2c')
.batch_normalization(is_training=is_training, activation_fn=None, name='bn4a_branch2c'))
(self.feed('bn4a_branch1',
'bn4a_branch2c')
.add(name='res4a')
.relu(name='res4a_relu')
.conv(1, 1, 256, 1, 1, biased=False, relu=False, name='res4b1_branch2a')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b1_branch2a')
.atrous_conv(3, 3, 256, 4, padding='SAME', biased=False, relu=False, name='res4b1_branch2b')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b1_branch2b')
.conv(1, 1, 1024, 1, 1, biased=False, relu=False, name='res4b1_branch2c')
.batch_normalization(is_training=is_training, activation_fn=None, name='bn4b1_branch2c'))
(self.feed('res4a_relu',
'bn4b1_branch2c')
.add(name='res4b1')
.relu(name='res4b1_relu')
.conv(1, 1, 256, 1, 1, biased=False, relu=False, name='res4b2_branch2a')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b2_branch2a')
.atrous_conv(3, 3, 256, 2, padding='SAME', biased=False, relu=False, name='res4b2_branch2b')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b2_branch2b')
.conv(1, 1, 1024, 1, 1, biased=False, relu=False, name='res4b2_branch2c')
.batch_normalization(is_training=is_training, activation_fn=None, name='bn4b2_branch2c'))
### block 4
### block 5
(self.feed('res4b1_relu',
'bn4b2_branch2c')
.add(name='res4b2')
.relu(name='res4b2_relu')
.conv(1, 1, 256, 1, 1, biased=False, relu=False, name='res4b3_branch2a')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b3_branch2a')
.atrous_conv(3, 3, 256, 2, padding='SAME', biased=False, relu=False, name='res4b3_branch2b')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b3_branch2b')
.conv(1, 1, 1024, 1, 1, biased=False, relu=False, name='res4b3_branch2c')
.batch_normalization(is_training=is_training, activation_fn=None, name='bn4b3_branch2c'))
(self.feed('res4b2_relu',
'bn4b3_branch2c')
.add(name='res4b3')
.relu(name='res4b3_relu')
.conv(1, 1, 256, 1, 1, biased=False, relu=False, name='res4b4_branch2a')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b4_branch2a')
.atrous_conv(3, 3, 256, 4, padding='SAME', biased=False, relu=False, name='res4b4_branch2b')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b4_branch2b')
.conv(1, 1, 1024, 1, 1, biased=False, relu=False, name='res4b4_branch2c')
.batch_normalization(is_training=is_training, activation_fn=None, name='bn4b4_branch2c'))
(self.feed('res4b3_relu',
'bn4b4_branch2c')
.add(name='res4b4')
.relu(name='res4b4_relu')
.conv(1, 1, 256, 1, 1, biased=False, relu=False, name='res4b5_branch2a')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b5_branch2a')
.atrous_conv(3, 3, 256, 2, padding='SAME', biased=False, relu=False, name='res4b5_branch2b')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b5_branch2b')
.conv(1, 1, 1024, 1, 1, biased=False, relu=False, name='res4b5_branch2c')
.batch_normalization(is_training=is_training, activation_fn=None, name='bn4b5_branch2c'))
### block 5
### block 6
(self.feed('res4b4_relu',
'bn4b5_branch2c')
.add(name='res4b5')
.relu(name='res4b5_relu')
.conv(1, 1, 256, 1, 1, biased=False, relu=False, name='res4b6_branch2a')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b6_branch2a')
.atrous_conv(3, 3, 256, 2, padding='SAME', biased=False, relu=False, name='res4b6_branch2b')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b6_branch2b')
.conv(1, 1, 1024, 1, 1, biased=False, relu=False, name='res4b6_branch2c')
.batch_normalization(is_training=is_training, activation_fn=None, name='bn4b6_branch2c'))
(self.feed('res4b5_relu',
'bn4b6_branch2c')
.add(name='res4b6')
.relu(name='res4b6_relu')
.conv(1, 1, 256, 1, 1, biased=False, relu=False, name='res4b7_branch2a')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b7_branch2a')
.atrous_conv(3, 3, 256, 4, padding='SAME', biased=False, relu=False, name='res4b7_branch2b')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b7_branch2b')
.conv(1, 1, 1024, 1, 1, biased=False, relu=False, name='res4b7_branch2c')
.batch_normalization(is_training=is_training, activation_fn=None, name='bn4b7_branch2c'))
(self.feed('res4b6_relu',
'bn4b7_branch2c')
.add(name='res4b7')
.relu(name='res4b7_relu')
.conv(1, 1, 256, 1, 1, biased=False, relu=False, name='res4b8_branch2a')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b8_branch2a')
.atrous_conv(3, 3, 256, 2, padding='SAME', biased=False, relu=False, name='res4b8_branch2b')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b8_branch2b')
.conv(1, 1, 1024, 1, 1, biased=False, relu=False, name='res4b8_branch2c')
.batch_normalization(is_training=is_training, activation_fn=None, name='bn4b8_branch2c'))
### block 6
### block 7
(self.feed('res4b7_relu',
'bn4b8_branch2c')
.add(name='res4b8')
.relu(name='res4b8_relu')
.conv(1, 1, 256, 1, 1, biased=False, relu=False, name='res4b9_branch2a')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b9_branch2a')
.atrous_conv(3, 3, 256, 2, padding='SAME', biased=False, relu=False, name='res4b9_branch2b')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b9_branch2b')
.conv(1, 1, 1024, 1, 1, biased=False, relu=False, name='res4b9_branch2c')
.batch_normalization(is_training=is_training, activation_fn=None, name='bn4b9_branch2c'))
(self.feed('res4b8_relu',
'bn4b9_branch2c')
.add(name='res4b9')
.relu(name='res4b9_relu')
.conv(1, 1, 256, 1, 1, biased=False, relu=False, name='res4b10_branch2a')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b10_branch2a')
.atrous_conv(3, 3, 256, 4, padding='SAME', biased=False, relu=False, name='res4b10_branch2b')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b10_branch2b')
.conv(1, 1, 1024, 1, 1, biased=False, relu=False, name='res4b10_branch2c')
.batch_normalization(is_training=is_training, activation_fn=None, name='bn4b10_branch2c'))
(self.feed('res4b9_relu',
'bn4b10_branch2c')
.add(name='res4b10')
.relu(name='res4b10_relu')
.conv(1, 1, 256, 1, 1, biased=False, relu=False, name='res4b11_branch2a')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b11_branch2a')
.atrous_conv(3, 3, 256, 2, padding='SAME', biased=False, relu=False, name='res4b11_branch2b')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b11_branch2b')
.conv(1, 1, 1024, 1, 1, biased=False, relu=False, name='res4b11_branch2c')
.batch_normalization(is_training=is_training, activation_fn=None, name='bn4b11_branch2c'))
### block 7
(self.feed('res4b10_relu',
'bn4b11_branch2c')
.add(name='res4b11')
.relu(name='res4b11_relu')
.conv(1, 1, 256, 1, 1, biased=False, relu=False, name='res4b12_branch2a')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b12_branch2a')
.atrous_conv(3, 3, 256, 2, padding='SAME', biased=False, relu=False, name='res4b12_branch2b')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b12_branch2b')
.conv(1, 1, 1024, 1, 1, biased=False, relu=False, name='res4b12_branch2c')
.batch_normalization(is_training=is_training, activation_fn=None, name='bn4b12_branch2c'))
(self.feed('res4b11_relu',
'bn4b12_branch2c')
.add(name='res4b12')
.relu(name='res4b12_relu')
.conv(1, 1, 256, 1, 1, biased=False, relu=False, name='res4b13_branch2a')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b13_branch2a')
.atrous_conv(3, 3, 256, 4, padding='SAME', biased=False, relu=False, name='res4b13_branch2b')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b13_branch2b')
.conv(1, 1, 1024, 1, 1, biased=False, relu=False, name='res4b13_branch2c')
.batch_normalization(is_training=is_training, activation_fn=None, name='bn4b13_branch2c'))
(self.feed('res4b12_relu',
'bn4b13_branch2c')
.add(name='res4b13')
.relu(name='res4b13_relu')
.conv(1, 1, 256, 1, 1, biased=False, relu=False, name='res4b14_branch2a')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b14_branch2a')
.atrous_conv(3, 3, 256, 2, padding='SAME', biased=False, relu=False, name='res4b14_branch2b')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b14_branch2b')
.conv(1, 1, 1024, 1, 1, biased=False, relu=False, name='res4b14_branch2c')
.batch_normalization(is_training=is_training, activation_fn=None, name='bn4b14_branch2c'))
(self.feed('res4b13_relu',
'bn4b14_branch2c')
.add(name='res4b14')
.relu(name='res4b14_relu')
.conv(1, 1, 256, 1, 1, biased=False, relu=False, name='res4b15_branch2a')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b15_branch2a')
.atrous_conv(3, 3, 256, 2, padding='SAME', biased=False, relu=False, name='res4b15_branch2b')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b15_branch2b')
.conv(1, 1, 1024, 1, 1, biased=False, relu=False, name='res4b15_branch2c')
.batch_normalization(is_training=is_training, activation_fn=None, name='bn4b15_branch2c'))
(self.feed('res4b14_relu',
'bn4b15_branch2c')
.add(name='res4b15')
.relu(name='res4b15_relu')
.conv(1, 1, 256, 1, 1, biased=False, relu=False, name='res4b16_branch2a')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b16_branch2a')
.atrous_conv(3, 3, 256, 4, padding='SAME', biased=False, relu=False, name='res4b16_branch2b')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b16_branch2b')
.conv(1, 1, 1024, 1, 1, biased=False, relu=False, name='res4b16_branch2c')
.batch_normalization(is_training=is_training, activation_fn=None, name='bn4b16_branch2c'))
(self.feed('res4b15_relu',
'bn4b16_branch2c')
.add(name='res4b16')
.relu(name='res4b16_relu')
.conv(1, 1, 256, 1, 1, biased=False, relu=False, name='res4b17_branch2a')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b17_branch2a')
.atrous_conv(3, 3, 256, 2, padding='SAME', biased=False, relu=False, name='res4b17_branch2b')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b17_branch2b')
.conv(1, 1, 1024, 1, 1, biased=False, relu=False, name='res4b17_branch2c')
.batch_normalization(is_training=is_training, activation_fn=None, name='bn4b17_branch2c'))
(self.feed('res4b16_relu',
'bn4b17_branch2c')
.add(name='res4b17')
.relu(name='res4b17_relu')
.conv(1, 1, 256, 1, 1, biased=False, relu=False, name='res4b18_branch2a')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b18_branch2a')
.atrous_conv(3, 3, 256, 2, padding='SAME', biased=False, relu=False, name='res4b18_branch2b')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b18_branch2b')
.conv(1, 1, 1024, 1, 1, biased=False, relu=False, name='res4b18_branch2c')
.batch_normalization(is_training=is_training, activation_fn=None, name='bn4b18_branch2c'))
(self.feed('res4b17_relu',
'bn4b18_branch2c')
.add(name='res4b18')
.relu(name='res4b18_relu')
.conv(1, 1, 256, 1, 1, biased=False, relu=False, name='res4b19_branch2a')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b19_branch2a')
.atrous_conv(3, 3, 256, 4, padding='SAME', biased=False, relu=False, name='res4b19_branch2b')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b19_branch2b')
.conv(1, 1, 1024, 1, 1, biased=False, relu=False, name='res4b19_branch2c')
.batch_normalization(is_training=is_training, activation_fn=None, name='bn4b19_branch2c'))
(self.feed('res4b18_relu',
'bn4b19_branch2c')
.add(name='res4b19')
.relu(name='res4b19_relu')
.conv(1, 1, 256, 1, 1, biased=False, relu=False, name='res4b20_branch2a')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b20_branch2a')
.atrous_conv(3, 3, 256, 2, padding='SAME', biased=False, relu=False, name='res4b20_branch2b')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b20_branch2b')
.conv(1, 1, 1024, 1, 1, biased=False, relu=False, name='res4b20_branch2c')
.batch_normalization(is_training=is_training, activation_fn=None, name='bn4b20_branch2c'))
(self.feed('res4b19_relu',
'bn4b20_branch2c')
.add(name='res4b20')
.relu(name='res4b20_relu')
.conv(1, 1, 256, 1, 1, biased=False, relu=False, name='res4b21_branch2a')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b21_branch2a')
.atrous_conv(3, 3, 256, 2, padding='SAME', biased=False, relu=False, name='res4b21_branch2b')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b21_branch2b')
.conv(1, 1, 1024, 1, 1, biased=False, relu=False, name='res4b21_branch2c')
.batch_normalization(is_training=is_training, activation_fn=None, name='bn4b21_branch2c'))
(self.feed('res4b20_relu',
'bn4b21_branch2c')
.add(name='res4b21')
.relu(name='res4b21_relu')
.conv(1, 1, 256, 1, 1, biased=False, relu=False, name='res4b22_branch2a')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b22_branch2a')
.atrous_conv(3, 3, 256, 4, padding='SAME', biased=False, relu=False, name='res4b22_branch2b')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b22_branch2b')
.conv(1, 1, 1024, 1, 1, biased=False, relu=False, name='res4b22_branch2c')
.batch_normalization(is_training=is_training, activation_fn=None, name='bn4b22_branch2c'))
(self.feed('res4b21_relu',
'bn4b22_branch2c')
.add(name='res4b22')
.relu(name='res4b22_relu')
.conv(1, 1, 2048, 1, 1, biased=False, relu=False, name='res5a_branch1')
.batch_normalization(is_training=is_training, activation_fn=None, name='bn5a_branch1'))
(self.feed('res4b22_relu')
.conv(1, 1, 512, 1, 1, biased=False, relu=False, name='res5a_branch2a')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn5a_branch2a')
.atrous_conv(3, 3, 512, 4, padding='SAME', biased=False, relu=False, name='res5a_branch2b')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn5a_branch2b')
.conv(1, 1, 2048, 1, 1, biased=False, relu=False, name='res5a_branch2c')
.batch_normalization(is_training=is_training, activation_fn=None, name='bn5a_branch2c'))
(self.feed('bn5a_branch1',
'bn5a_branch2c')
.add(name='res5a')
.relu(name='res5a_relu')
.conv(1, 1, 512, 1, 1, biased=False, relu=False, name='res5b_branch2a')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn5b_branch2a')
.atrous_conv(3, 3, 512, 8, padding='SAME', biased=False, relu=False, name='res5b_branch2b')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn5b_branch2b')
.conv(1, 1, 2048, 1, 1, biased=False, relu=False, name='res5b_branch2c')
.batch_normalization(is_training=is_training, activation_fn=None, name='bn5b_branch2c'))
(self.feed('res5a_relu',
'bn5b_branch2c')
.add(name='res5b')
.relu(name='res5b_relu')
.conv(1, 1, 512, 1, 1, biased=False, relu=False, name='res5c_branch2a')
.batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn5c_branch2a')
.atrous_conv(3, 3, 512, 16, padding='SAME', biased=False, relu=False, name='res5c_branch2b')
.batch_normalization(activation_fn=tf.nn.relu, name='bn5c_branch2b', is_training=is_training)
.conv(1, 1, 2048, 1, 1, biased=False, relu=False, name='res5c_branch2c')
.batch_normalization(is_training=is_training, activation_fn=None, name='bn5c_branch2c'))
(self.feed('res5b_relu',
'bn5c_branch2c')
.add(name='res5c')
.relu(name='res5c_relu')
.atrous_conv(3, 3, 256, 6, padding='SAME', relu=False, name='fc1_voc12_c0')
.batch_normalization(is_training=is_training, activation_fn=None, name='fc1_voc12_c0_bn'))
(self.feed('res5c_relu')
.atrous_conv(3, 3, 256, 12, padding='SAME', relu=False, name='fc1_voc12_c1')
.batch_normalization(is_training=is_training, activation_fn=None, name='fc1_voc12_c1_bn'))
(self.feed('res5c_relu')
.atrous_conv(3, 3, 256, 18, padding='SAME', relu=False, name='fc1_voc12_c2')
.batch_normalization(is_training=is_training, activation_fn=None, name='fc1_voc12_c2_bn'))
(self.feed('res5c_relu')
.atrous_conv(1, 1, 256, 1, padding='SAME', relu=False, name='fc1_voc12_c3')
.batch_normalization(is_training=is_training, activation_fn=None, name='fc1_voc12_c3_bn'))
(self.feed('fc1_voc12_c0_bn',
'fc1_voc12_c1_bn',
'fc1_voc12_c2_bn',
'fc1_voc12_c3_bn')
.add(name='fc1_voc12')
.conv(1, 1, 256, 1, 1, biased=False, relu=False, name='fc_oooo')
.batch_normalization(is_training=is_training, activation_fn=None, name='fc_oooo_bn')
.conv(1, 1, num_classes, 1, 1, biased=False, relu=False, name='fc_out'))