-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathablation.py
461 lines (386 loc) · 19.9 KB
/
ablation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
"""
Evaluation Script
Support Two Modes: Pooling based inference and sliding based inference
"""
# ToDo: Be careful Relu!!!
import os
import logging
import sys
import argparse
import random
from datetime import datetime
from tqdm import tqdm
import cv2
from PIL import Image
from torch.backends import cudnn
from torch.utils.data import DataLoader
import torch
import torchvision.transforms as transforms
import numpy as np
import transforms.joint_transforms as joint_transforms
import matplotlib.pyplot as plt
from config import assert_and_infer_cfg
import datasets
from datasets import cityscapes
from datasets import mapillary
from datasets import synthia
from datasets import bdd100k
from datasets import gtav
from datasets import idd
from optimizer import restore_snapshot
from utils.my_data_parallel import MyDataParallel
from utils.misc import fast_hist, save_log, per_class_iu, evaluate_eval_for_inference
from train import parse_for_modelassign
import torchvision.transforms as standard_transforms
import transforms.transforms as extended_transforms
import torch.nn.functional as F
from datasets import cityscapes_labels
import time
import network
from tsnelib import RunTsne
sys.path.append(os.path.join(os.getcwd()))
sys.path.append(os.path.join(os.getcwd(), '../'))
parser = argparse.ArgumentParser(description='evaluation')
parser = parse_for_modelassign(parser)
parser.add_argument('--dataset', nargs='*', type=str, default=['cityscapes'],
help='a list of datasets; cityscapes, mapillary, camvid, kitti, gtav, mapillary, synthia')
parser.add_argument('--source_domain', nargs='*', type=str, default=['gtav'],
help='a list of datasets; cityscapes, mapillary, camvid, kitti, gtav, mapillary, synthia')
parser.add_argument('--crop_size', nargs='*', type=int, default=[1280,720],
help='a list of datasets; tsnemem, clustering')
parser.add_argument('--exp', type=str, default=None)
parser.add_argument('--snapshot', required=True, type=str, default='')
parser.add_argument('--ablation_mode', nargs='*', type=str, default=['tsnemem'],
help='a list of datasets; tsnemem, clustering')
parser.add_argument('--test_mode', action='store_true', default=False,
help='minimum testing (4 items evaluated) to verify nothing failed')
parser.add_argument('--num_workers', type=int, default=8)
parser.add_argument('--local_rank', default=0, type=int,
help='parameter used by apex library')
parser.add_argument('--dist_url', default='tcp://127.0.0.1:', type=str,
help='url used to set up distributed training')
parser.add_argument('--outdir', default=None, type=str,
help='output dir')
parser.add_argument('--syncbn', action='store_true', default=False,
help='Use Synchronized BN')
parser.add_argument('--mem_actmap', action='store_true', default=False,
help='plot memory activation map')
parser.add_argument('--tsne', action='store_true', default=False,
help='plot tsne map')
parser.add_argument('--image_in', action='store_true', default=False,
help='Image instance normalization')
parser.add_argument('--all_class', action='store_true', default=False,
help='visuallize all classes')
parser.add_argument('--tsnecuda', action='store_true', default=False,
help='visuallize all classes')
parser.add_argument('--duplication', type=int, default=10)
parser.add_argument('--imagenum_dom', type=int, default=600)
args = parser.parse_args()
assert_and_infer_cfg(args, train_mode=False)
cudnn.benchmark = True
args.world_size = 1
args.target_domain=[]
for x in args.dataset:
if x not in args.source_domain:
args.target_domain.append(x)
num_classes = datasets.num_classes
trainId2name = cityscapes_labels.trainId2name
trainId2color = cityscapes_labels.trainId2color
domId2name = {
0:'gtav',
1:'synthia',
2:'cityscapes',
3:'bdd100k',
4:'mapillary',
5:'idd',
}
if 'WORLD_SIZE' in os.environ:
args.world_size = int(os.environ['WORLD_SIZE'])
print("Total world size: ", int(os.environ['WORLD_SIZE']))
torch.cuda.set_device(args.local_rank)
print('My Rank:', args.local_rank)
try:
args.dist_url = args.dist_url + str(8000 + (int(time.time()%1000))//10)
print('disturl : ' + args.dist_url)
torch.distributed.init_process_group(backend='nccl',
init_method=args.dist_url,
world_size=args.world_size, rank=args.local_rank)
except RuntimeError:
time.sleep(1)
args.dist_url = args.dist_url + str(8000 + (int(time.time()%1000))//10)
print('disturl : ' + args.dist_url)
torch.distributed.init_process_group(backend='nccl',
init_method=args.dist_url,
world_size=args.world_size, rank=args.local_rank)
mean_std = ([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
date_str = str(datetime.now().strftime('%Y_%m_%d_%H_%M_%S'))
def showbatchtensor(imgs):
for ind in range(imgs.shape[0]):
if imgs[ind].shape[0]==1: # if imgs is gt
plt.imshow(imgs[ind].squeeze())
plt.show()
else:
plt.imshow(imgs[ind].permute(1, 2, 0))
plt.show()
def setup_loader():
"""
Setup Data Loaders
"""
# Image appearance transformation
val_input_transform = [
standard_transforms.ToTensor()
]
target_transform = [extended_transforms.MaskToTensor()]
if args.crop_size is not None:
val_joint_transform_list_global = [
joint_transforms.CenterCropPad(tuple(args.crop_size))]
else:
val_joint_transform_list_global=[]
val_sets = []
val_dataset_names = []
for dataset_name in args.dataset:
if 'cityscapes' == dataset_name:
dataset = cityscapes
val_set = dataset.CityScapes('fine', 'val', 0,
transform=standard_transforms.Compose(val_input_transform),
target_transform=standard_transforms.Compose(target_transform),
joint_transform=joint_transforms.Compose(val_joint_transform_list_global),
eval_mode = True,
cv_split=0,
image_in=args.image_in)
val_sets.append(val_set)
val_dataset_names.append('cityscapes')
if 'idd' == dataset_name:
dataset = idd
val_set = dataset.CityScapes('val', 0,
transform=standard_transforms.Compose(val_input_transform),
target_transform=standard_transforms.Compose(target_transform),
joint_transform=joint_transforms.Compose(val_joint_transform_list_global),
eval_mode = True,
cv_split=0,
image_in=args.image_in)
val_sets.append(val_set)
val_dataset_names.append('idd')
if 'bdd100k' == dataset_name:
dataset = bdd100k
val_set = dataset.BDD100K('val', 0,
transform=standard_transforms.Compose(val_input_transform),
target_transform=standard_transforms.Compose(target_transform),
joint_transform=joint_transforms.Compose(val_joint_transform_list_global),
eval_mode=True,
cv_split=0,
image_in=args.image_in)
val_sets.append(val_set)
val_dataset_names.append('bdd100k')
if 'gtav' == dataset_name:
dataset = gtav
val_set = gtav.GTAV('val', 0,
transform=standard_transforms.Compose(val_input_transform),
target_transform=standard_transforms.Compose(target_transform),
joint_transform=joint_transforms.Compose(val_joint_transform_list_global),
eval_mode=True,
cv_split=0,
image_in=args.image_in)
val_sets.append(val_set)
val_dataset_names.append('gtav')
if 'synthia' == dataset_name:
dataset = synthia
val_set = dataset.Synthia('val', 0,
transform=standard_transforms.Compose(val_input_transform),
target_transform=standard_transforms.Compose(target_transform),
joint_transform=joint_transforms.Compose(val_joint_transform_list_global),
eval_mode=True,
cv_split=0,
image_in=args.image_in)
val_sets.append(val_set)
val_dataset_names.append('synthia')
if 'mapillary' == dataset_name:
dataset = mapillary
eval_size = 1536
mapillary_val_jointtransform_list = [
joint_transforms.ResizeHeight(eval_size),
joint_transforms.CenterCropPad(eval_size)]
mapillary_val_jointtransform_list += val_joint_transform_list_global
val_set = dataset.Mapillary(
'semantic', 'val',
joint_transform_list=mapillary_val_jointtransform_list,
transform=standard_transforms.Compose(val_input_transform),
target_transform=standard_transforms.Compose(target_transform),
eval_mode=True,
image_in=args.image_in,
test=False)
val_sets.append(val_set)
val_dataset_names.append('mapillary')
batch_size = 1
extra_val_loader = {}
for val_set,val_dataset_name in zip(val_sets,val_dataset_names):
if args.syncbn:
from datasets.sampler import DistributedSampler
val_sampler = DistributedSampler(val_set, pad=False, permutation=False, consecutive_sample=False)
else:
val_sampler = None
val_loader = DataLoader(val_set, batch_size=batch_size,
num_workers=args.num_workers // 2, shuffle=False, drop_last=False,
sampler=val_sampler)
extra_val_loader[val_dataset_name] = val_loader
return extra_val_loader
def get_net():
"""
Get Network for evaluation
"""
logging.info('Load model file: %s', args.snapshot)
net = network.get_net(args, criterion=None)
net = torch.nn.SyncBatchNorm.convert_sync_batchnorm(net)
net = network.warp_network_in_dataparallel(net, args.local_rank)
net, _, _, _, _ = restore_snapshot(net, optimizer=None, scheduler=None,
snapshot=args.snapshot, restore_optimizer_bool=False)
net.eval()
return net
class RunAbla():
def __init__(self, output_dir, ablation_mode,selected_cls,imagenum_dom = args.imagenum_dom):
self.output_dir = output_dir
self.ablation_mode = ablation_mode
self.imagenum_dom = imagenum_dom
self.img_transform = transforms.Compose(
[transforms.ToTensor(), transforms.Normalize(*mean_std)])
self.to_pil = transforms.ToPILImage()
self.tsne_path = os.path.join(self.output_dir, 'tsne_'+''.join([x[0] for x in args.dataset]))
os.makedirs(self.tsne_path, exist_ok=True)
self.mem_actpath = os.path.join(self.output_dir, 'memory_activation')
self.mapping = {}
self.selected_cls = selected_cls
self.tsne_runner = RunTsne( self.tsne_path , selected_cls, domId2name, trainId2name, trainId2color=trainId2color, tsnecuda=args.tsnecuda, extention='.png',duplication=args.duplication)
self.tsne_runner_updated = RunTsne( self.tsne_path , selected_cls, domId2name, trainId2name, trainId2color=trainId2color, tsnecuda=args.tsnecuda, extention='.png',duplication=args.duplication)
def channelwise_minmax(self,AA):
AA = AA.clone()
c, h, w = AA.size()
AA = AA.view(c, -1)
AA -= AA.min(0, keepdim=True)[0]
AA /= AA.max(0, keepdim=True)[0]
return AA.view(c, h, w)
def tsne_memact(self, data_loaders, net):
######################################################################
# Run inference
######################################################################
name2trainId = {v:k for k,v in trainId2name.items()}
name2domId = {domId2name[x]: x for x in domId2name.keys()}
self.selected_clsid = [name2trainId[x] for x in self.selected_cls]
with torch.no_grad():
# Validation after epochs, put source dataset into --val_dataset argument
for dataset, val_loader in data_loaders.items():
count = 0
# Run Inference!
pbar = tqdm(val_loader, desc='memory_activation & extract feature', smoothing=1.0)
for val_idx, data in enumerate(pbar):
if count >= self.imagenum_dom:
break
inputs, gt_image, img_names, _ = data
# if img_names[0] == 'a91b7555-00001190':
if True:
input_pil = self.to_pil(inputs[0])
input = self.img_transform(input_pil)
C, H, W = input.shape
gt_image = gt_image.view(-1, H, W)
input = input.unsqueeze(dim=0)
assert len(inputs.size()) == 4 and len(gt_image.size()) == 3
assert inputs.size()[2:] == gt_image.size()[1:]
input, gt_cuda = input.cuda(), gt_image.cuda()
with torch.no_grad():
if args.use_wtloss:
outputs = net(input, visualize=True)
output, f_cor_arr = outputs[0], outputs[1]
else:
outputs = net(input)
if args.memory:
output, mem_outputs, features = outputs[0], outputs[-2], outputs[-1]
softmax_score_memory = mem_outputs[1].permute(0, 3, 1, 2)
updated_features = mem_outputs[-1] # get refined features.
self.tsne_runner_updated.input2basket(updated_features, gt_cuda, dataset)
else:
output, features = outputs[0], outputs[-1]
assert output.size()[2:] == gt_image.size()[1:]
assert output.size()[1] == num_classes
self.tsne_runner.input2basket(features, gt_cuda, dataset)
count += 1
######################################################################
# Dump Images(memory activation map)
######################################################################
if args.mem_actmap:
mem_actpath = os.path.join(self.mem_actpath, dataset)
os.makedirs(mem_actpath, exist_ok=True)
img_name = img_names[0]
softmax_score_memory = F.interpolate(softmax_score_memory, [H, W], mode='bilinear',
align_corners=True)
softmax_score_memory = softmax_score_memory.squeeze()
softmax_score_memory_refined = self.channelwise_minmax(softmax_score_memory.clone())
softmax_score_memory = (softmax_score_memory - softmax_score_memory.min()) / (
softmax_score_memory.max() - softmax_score_memory.min())
softmax_score_memory = softmax_score_memory.cpu()
softmax_score_memory_refined = softmax_score_memory_refined.cpu()
for slot in self.selected_clsid:
cls_mem_score = softmax_score_memory_refined[slot]
cls_mem_score = np.array(cls_mem_score)
cls_mem_score = np.clip(cls_mem_score, 0, 1) * 255
cls_mem_score_map = cv2.applyColorMap(np.uint8(cls_mem_score), cv2.COLORMAP_VIRIDIS)
cls_mem_score_map = self.to_pil(cv2.cvtColor(cls_mem_score_map, cv2.COLOR_BGR2RGB))
act_img_name = '{}/{}_{}_memact.png'.format(mem_actpath, img_name,
trainId2name[slot])
cls_mem_score_map.save(act_img_name)
cls_mem_score_map = cv2.applyColorMap(np.uint8(cls_mem_score), cv2.COLORMAP_VIRIDIS)
cls_mem_score_map = self.to_pil(cv2.cvtColor(cls_mem_score_map, cv2.COLOR_BGR2RGB))
blend = Image.blend(input_pil.convert("RGBA"), cls_mem_score_map.convert("RGBA"), 0.65)
act_img_name = '{}/{}_{}_memact_blend.png'.format(mem_actpath, img_name, trainId2name[slot])
blend.save(act_img_name)
else:
continue
if args.tsne:
if args.memory:
m_items = net.module.memory.m_items.clone().detach()
self.tsne_runner.input_memory_item(m_items)
self.tsne_runner_updated.input_memory_item(m_items)
del net
torch.cuda.empty_cache()
#################################################
# tsne plot
#################################################
# seen domain
# domains2draw = args.source_domain
# self.tsne_runner.draw_tsne(domains2draw,plot_memory=args.memory,clscolor=False)
#
# # unseen domain
# domains2draw = args.target_domain
# self.tsne_runner.draw_tsne(domains2draw, plot_memory=args.memory,clscolor=False)
# all
domains2draw = args.dataset
self.tsne_runner.draw_tsne(domains2draw, plot_memory=args.memory,clscolor=False)
def main():
"""
Main Function
"""
if args.test_mode:
ckpt_path = os.path.expanduser('~/experiment_pinmem/test')
else:
ckpt_path = os.path.join(os.path.split(args.snapshot)[0], os.path.splitext(os.path.split(args.snapshot)[1])[0])
if args.outdir is not None:
output_dir = args.outdir
else:
output_dir = ckpt_path
os.makedirs(output_dir, exist_ok=True)
save_log('abla', output_dir, date_str)
logging.info("Network Arch: %s", args.arch)
logging.info("Exp_name: %s", args.exp)
logging.info("Ckpt path: %s", ckpt_path)
# Set up network, loader, inference mode
test_loaders = setup_loader()
net = get_net()
if args.all_class:
selected_cls = ['road', 'sidewalk', 'building', 'wall', 'fence', 'pole', 'traffic light', 'traffic sign',
'vegetation', 'terrain', 'sky', 'person', 'rider', 'car', 'truck', 'bus', 'train', 'motorcycle',
'bicycle']
else:
selected_cls = ['building', 'vegetation', 'sky', 'car','sidewalk',
'pole'] # good memory learning for tsne
runner = RunAbla(output_dir,ablation_mode=args.ablation_mode,selected_cls = selected_cls)
runner.tsne_memact(test_loaders, net)
if __name__ == '__main__':
main()