forked from pjs990301/Wi-Fi-Few-shot-Benchmark
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsupervised.py
85 lines (64 loc) · 2.93 KB
/
supervised.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import torch
def train(model, tensor_loader, num_epochs, learning_rate, criterion, device):
model = model.to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.9)
accuracy_history = [] # Accuracy 기록을 위한 리스트
loss_history = [] # Loss 기록을 위한 리스트
for epoch in range(num_epochs):
model.train()
epoch_loss = 0
epoch_accuracy = 0
# print(len(tensor_loader))
for data in tensor_loader:
inputs, labels = data
inputs = inputs.to(device)
labels = labels.to(device)
labels = labels.type(torch.LongTensor)
# print(inputs.shape)
optimizer.zero_grad()
outputs = model(inputs)
outputs = outputs.to(device)
outputs = outputs.type(torch.FloatTensor)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
epoch_loss += loss.item() * inputs.size(0)
predict_y = torch.argmax(outputs, dim=1).to(device)
epoch_accuracy += (predict_y == labels.to(device)).sum().item() / labels.size(0)
epoch_loss = epoch_loss / len(tensor_loader.dataset)
epoch_accuracy = epoch_accuracy / len(tensor_loader)
accuracy_history.append(epoch_accuracy)
loss_history.append(epoch_loss)
optimizer.step()
print('Epoch:{}, Accuracy:{:.5f},Loss:{:.9f}'.format(epoch + 1, float(epoch_accuracy), float(epoch_loss)))
return accuracy_history, loss_history
def test(model, tensor_loader, criterion, device):
model.eval()
test_acc = 0
test_loss = 0
accuracy_history = [] # Accuracy 기록을 위한 리스트
loss_history = [] # Loss 기록을 위한 리스트
for data in tensor_loader:
inputs, labels = data
inputs = inputs.to(device)
labels.to(device)
labels = labels.type(torch.LongTensor)
# print(inputs)
# print(labels)
# print(inputs.shape)
outputs = model(inputs)
outputs = outputs.type(torch.FloatTensor)
outputs.to(device)
loss = criterion(outputs, labels)
predict_y = torch.argmax(outputs, dim=1).to(device)
accuracy = (predict_y == labels.to(device)).sum().item() / labels.size(0)
accuracy_history.append(accuracy)
loss_history.append(loss.item() * inputs.size(0))
test_acc += accuracy
test_loss += loss.item() * inputs.size(0)
print('test_Accuracy:{:.5f}, test_Loss:{:.9f}'.format( float(accuracy), float(loss)))
test_acc = test_acc / len(tensor_loader)
test_loss = test_loss / len(tensor_loader.dataset)
print("validation accuracy:{:.5f}, loss:{:.9f}".format(float(test_acc), float(test_loss)))
return test_acc, test_loss, accuracy_history, loss_history