-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathplacute.py
303 lines (221 loc) · 7.75 KB
/
placute.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
from collections import defaultdict
from copy import deepcopy
from heapq import heappush, heappop
from math import inf
import time
EMPTY_SYMBOL = '#'
INFINITY = +inf
def read_input(path):
with open(path) as fin:
board = []
for line in fin:
row = list(line.strip())
board.append(row)
return board
def get_zones(board):
rows = len(board)
if rows == 0:
return []
columns = len(board[0])
visited = [[False for _ in range(columns)] for _ in range(rows)]
def visit(i, j):
zone = [(i, j)]
if ((i > 0) and (not visited[i - 1][j]) and
(board[i][j] == board[i - 1][j])):
visited[i - 1][j] = True
zone += visit(i - 1, j)
if ((i < rows - 1) and (not visited[i + 1][j]) and
(board[i][j] == board[i + 1][j])):
visited[i + 1][j] = True
zone += visit(i + 1, j)
if ((j > 0) and (not visited[i][j - 1]) and
(board[i][j] == board[i][j - 1])):
visited[i][j - 1] = True
zone += visit(i, j - 1)
if ((j < columns - 1) and (not visited[i][j + 1]) and
(board[i][j] == board[i][j + 1])):
visited[i][j + 1] = True
zone += visit(i, j + 1)
return zone
zones = []
for column in range(columns):
for row in range(rows):
if visited[row][column]:
continue
visited[row][column] = True
zone = visit(row, column)
zone_color = board[row][column]
if zone_color == EMPTY_SYMBOL:
continue
zones.append((zone_color, zone))
return zones
def remove_zone(board, zone):
for row, column in zone:
board[row][column] = EMPTY_SYMBOL
rows = len(board)
columns = len(board[0])
column = 0
while column < columns:
# shift down blocks
row = rows - 1
while row > 0:
if board[row][column] == EMPTY_SYMBOL:
search_row = row - 1
while search_row >= 0 and board[search_row][column] == EMPTY_SYMBOL:
search_row -= 1
# we finished this column
if search_row < 0:
break
board[row][column] = board[search_row][column]
board[search_row][column] = EMPTY_SYMBOL
row -= 1
# delete empty columns
if board[rows - 1][column] == EMPTY_SYMBOL:
for row in range(rows):
del board[row][column]
columns -= 1
else:
column += 1
# delete empty rows
row = 0
while row < rows:
empty = all(map(lambda cell: cell == EMPTY_SYMBOL, board[row]))
if empty:
del board[row]
rows -= 1
else:
row += 1
def cell_count_heuristic(board):
"Counts how many non-empty cells the board has."
count = 0
for line in board:
for cell in line:
if cell != EMPTY_SYMBOL:
count += 1
return count
def zone_count_heuristic(board):
"""Counts how many colors are there left.
Admissible because we have to use a move for at least each color.
"""
colors = set()
for zone_color, _ in get_zones(board):
colors.add(zone_color)
return len(colors)
def fragmentation_heuristic(board):
"""Estimates how fragmented the board is.
This works because we'd get the same total cost if
we would remove each zone individually.
"""
zones = get_zones(board)
num_zones = len(zones)
if num_zones == 0:
return 0
color_counts = defaultdict(int)
for zone_color, zone in zones:
color_counts[zone_color] += len(zone)
cost = 0
for zone_color, zone in zones:
cost += 1 - len(zone)/color_counts[zone_color]
return cost
heuristic = None
class Node:
"Node in the A* search graph"
def __init__(self, board, distance, predecessor=None):
self.board = board
self.distance = distance
self.heuristic_value = heuristic(board)
# Precompute the node's value
self.value = self.distance + self.heuristic_value
# Save the predecessor for retracing the path at the end
self.predecessor = predecessor
def __repr__(self):
return '\n'.join(''.join(row) for row in self.board)
def __lt__(self, other):
return self.value < other.value
def is_goal(self):
"Predicate which checks if this node is the target node."
return len(self.board) == 0
def get_successors(self):
"Returns the successors of this node in the traversal."
successors = []
zones = get_zones(self.board)
zone_sizes = defaultdict(int)
for zone_color, zone in zones:
zone_sizes[zone_color] += len(zone)
for zone_color, zone in zones:
zone_size = len(zone)
# only zones with at least three blocks can be popped
if zone_size < 3:
continue
new_board = deepcopy(self.board)
remove_zone(new_board, zone)
cost = 2 - zone_size / zone_sizes[zone_color]
node = Node(new_board, self.distance + cost, predecessor=self)
successors.append(node)
return successors
def recreate_path(self):
"Starting from a node, recreates the path to the root of the traversal tree."
node = self
path = [node]
while node.predecessor:
node = node.predecessor
path.append(node)
return list(reversed(path))
def astar(initial_board, output_path=None):
start_time = time.perf_counter()
initial_node = Node(initial_board, distance=0)
open_nodes = [initial_node]
minimum_distances = defaultdict(lambda: INFINITY)
num_steps = 0
while open_nodes:
current_node = heappop(open_nodes)
if current_node.is_goal():
break
for next_node in current_node.get_successors():
if next_node.distance < minimum_distances[next_node]:
minimum_distances[next_node] = next_node.distance
heappush(open_nodes, next_node)
num_steps += 1
end_time = time.perf_counter()
total_time = end_time - start_time
print(f"A* finished in {num_steps} steps = {total_time:.2f} seconds")
if current_node.is_goal():
print("Found solution")
path = current_node.recreate_path()
total_cost = 0
for node in path[1:]:
cost = node.distance - node.predecessor.distance
total_cost += cost
print(f"Total cost: {total_cost:.2f}")
if output_path:
with open(output_path, "w") as fout:
print(path[0], file=fout)
print(file=fout)
for node in path[1:]:
cost = node.distance - node.predecessor.distance
print(node, file=fout)
print(f"Cost: {cost:.2f}", file=fout)
print(file=fout)
else:
print("Not solvable")
def main():
for index in range(1, 5):
print(f"\tInput #{index}")
input_path = f'input_{index}.txt'
output_path = f'output_{index}.txt'
initial_board = read_input(input_path)
global heuristic
print("Using cell count heuristic (not admissible)")
heuristic = cell_count_heuristic
astar(initial_board)
print()
print("Using zone count heuristic")
heuristic = zone_count_heuristic
astar(initial_board)
print()
print("Using fragmentation heuristic")
heuristic = fragmentation_heuristic
astar(initial_board, output_path)
print()
if __name__ == '__main__':
main()