-
Notifications
You must be signed in to change notification settings - Fork 0
/
visualize_input.py
37 lines (31 loc) · 1.01 KB
/
visualize_input.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import pandas as pd
import matplotlib.pyplot as plt
def visualize_input(dataset):
input = pd.read_csv("intermediate/processed_training_input_"+dataset+".csv")
def scatterplot(label):
plt.scatter(input[label], input["load"], s=1)
plt.xlabel(label)
plt.tight_layout()
plt.figure(1)
plt.plot(input.index, input["load"]-200, input.index, input["hour"]*4+100, input.index, (input["NAM_temp"]-250)*10, linewidth=0.5)
plt.figure(2, figsize=(5, 3))
scatterplot("day")
plt.figure(3, figsize=(5, 3))
scatterplot("hour")
plt.figure(4, figsize=(5, 3))
scatterplot("GFS_temp")
plt.figure(5, figsize=(5, 3))
scatterplot("NAM_temp")
plt.figure(6, figsize=(5, 3))
scatterplot("GFS_hum")
plt.figure(7, figsize=(5, 3))
scatterplot("NAM_dew")
plt.figure(8, figsize=(5, 3))
scatterplot("load_t_72")
plt.show()
def main():
visualize_input("load_1")
visualize_input("load_12")
visualize_input("load_51")
if __name__ == "__main__":
main()