-
Notifications
You must be signed in to change notification settings - Fork 10
/
infer_fl_curve.py
executable file
·250 lines (211 loc) · 8.35 KB
/
infer_fl_curve.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import torch
import numpy as np
from dataset.dataset import getDatasetAndLoader
from model import getOptNet
from pyhocon import ConfigFactory,HOCONConverter
import argparse
import openmesh as om
import os
import os.path as osp
from MCAcc import Seg3dLossless
import utils
import cv2
from tqdm import tqdm
from pytorch3d.renderer import (
RasterizationSettings,
HardPhongShader,
PointsRasterizationSettings,
PointsRenderer,
PointsRasterizer,
SoftSilhouetteShader,
AlphaCompositor
)
from pytorch3d.io import save_ply, save_obj
import trimesh
import pdb
from utils.constant import TEMPLATE_GARMENT
parser = argparse.ArgumentParser(description='neu video body infer')
parser.add_argument('--gpu-ids',nargs='+',type=int,metavar='IDs',
help='gpu ids')
parser.add_argument('--batch-size',default=1,type=int,metavar='IDs',
help='batch size')
parser.add_argument('--rec-root',default=None,metavar='M',
help='data root')
parser.add_argument('--frames',default=-1,type=int,metavar='frames',
help='render frame nums')
parser.add_argument('--nV',action='store_true',help='not save video')
parser.add_argument('--data-type',default= 'synthe',help='the type of inference dataset')
parser.add_argument('--nI',action='store_true',help='not save image')
parser.add_argument('--C',action='store_true',help='overlay on gtimg')
parser.add_argument('--nColor',action='store_true',help='not render images')
parser.add_argument('--a_pose', action='store_true', help='using a-pose images to extract garment_meshes')
args = parser.parse_args()
assert(not(args.nV and args.nI))
resolutions={'coarse':
[
(14+1, 20+1, 8+1),
(28+1, 40+1, 16+1),
(56+1, 80+1, 32+1),
(112+1, 160+1, 64+1),
(224+1, 320+1, 128+1),
],
'medium':
[
(18+1, 24+1, 12+1),
(36+1, 48+1, 24+1),
(72+1, 96+1, 48+1),
(144+1, 192+1, 96+1),
(288+1, 384+1, 192+1),
],
'fine':
[
(20+1, 26+1, 14+1),
(40+1, 52+1, 28+1),
(80+1, 104+1, 56+1),
(160+1, 208+1, 112+1),
(320+1, 416+1, 224+1),
]
}
resolutions_higher = [
(32+1, 32+1, 32+1),
(64+1, 64+1, 64+1),
(128+1, 128+1, 128+1),
(256+1, 256+1, 256+1),
(512+1, 512+1, 512+1),
]
# resolutions = [
# (32+1, 32+1, 32+1),
# (64+1, 64+1, 64+1),
# (128+1, 128+1, 128+1),
# (256+1, 256+1, 256+1),
# (512+1, 512+1, 512+1),
# ]
# resolutions = [
# (14+1, 20+1, 8+1),
# (28+1, 40+1, 16+1),
# (56+1, 80+1, 32+1),
# (112+1, 160+1, 64+1),
# (224+1, 320+1, 128+1),
# ]
# resolutions = [
# (18+1, 24+1, 12+1),
# (36+1, 48+1, 24+1),
# (72+1, 96+1, 48+1),
# (144+1, 192+1, 96+1),
# (288+1, 384+1, 192+1),
# ]
config=ConfigFactory.parse_file(osp.join(args.rec_root,'config.conf'))
device=args.gpu_ids[0]
deformer_condlen=config.get_int('mlp_deformer.condlen')
renderer_condlen=config.get_int('render_net.condlen')
# batch_size=config.get_int('train.coarse.batch_size')
batch_size=args.batch_size
shuffle=False
condlen={'deformer': int(config.get_int('mlp_deformer.condlen') * (1+len(TEMPLATE_GARMENT[config.get_string('train.garment_type')]))),'renderer':config.get_int('render_net.condlen')}
dataset,dataloader = getDatasetAndLoader(osp.normpath(osp.join(args.rec_root,osp.pardir)),condlen,batch_size,
shuffle,config.get_int('train.num_workers'),
config.get_bool('train.opt_pose'),config.get_bool('train.opt_trans'),config.get_config('train.opt_camera'), garment_type =config.get_string('train.garment_type'), data_type = args.data_type, a_pose = args.a_pose)
# optNet,sdf_initialized=getOptNet(dataset, args.save_folder, batch_size,bmins,bmaxs,resolutions['coarse'],device,config,use_initial_sdf ,visualizer= wv)
optNet,sdf_initialized=getOptNet(dataset, args.rec_root.split('/')[-1], batch_size,None,None,resolutions['fine'],device,config)
optNet,dataloader=utils.set_hierarchical_config(config,'fine',optNet,dataloader,resolutions['fine'])
# load_alpha_curve
optNet.align_fl(os.path.join(args.rec_root, 'fl_init', 'init_trans_matrix.pth'))
# optNet.eval()
# raster_settings_silhouette = RasterizationSettings(
# image_size=(dataset.H,dataset.W),
# blur_radius=0.,
# bin_size=int(2 ** max(np.ceil(np.log2(max(dataset.H,dataset.W))) - 4, 4)),
# faces_per_pixel=1,
# perspective_correct=True,
# clip_barycentric_coords=False,
# cull_backfaces=False
# renderer = MeshRendererWithFragments(
# rasterizer=MeshRasterizer(
# cameras=cameras,
# raster_settings=raster_settings_silhouette
# ),
# shader=SoftSilhouetteShader()
# )
# original camera setting
# raster_settings = RasterizationSettings(
# image_size=(dataset.H,dataset.W),
# bin_size=int(2 ** max(np.ceil(np.log2(max(dataset.H,dataset.W))) - 4, 4)),
# blur_radius=0,
# faces_per_pixel=1,
# perspective_correct=True,
# clip_barycentric_coords=False,
# cull_backfaces=False
# )
# binsize is very important in test
raster_settings=RasterizationSettings(
image_size=(dataset.H,dataset.W),
blur_radius=0.,
# blur_radius=np.log(1. / 1e-4 - 1.)*3.e-6,
bin_size=(92 if max(dataset.H,dataset.W)>1024 and max(dataset.H,dataset.W)<=2048 else None),
faces_per_pixel=1,
perspective_correct=True,
clip_barycentric_coords=False,
cull_backfaces= False
)
optNet.maskRender.rasterizer.raster_settings=raster_settings
# optNet.maskRender.shader=SoftSilhouetteShader()
optNet.maskRender.shader=HardPhongShader(device,optNet.maskRender.rasterizer.cameras)
optNet.pcRender=None
H=dataset.H
W=dataset.W
print('load model: '+osp.join(args.rec_root,'latest.pth'))
optNet, dataset, ___=utils.load_model(osp.join(args.rec_root,'latest.pth'),optNet,dataset,device)
optNet.dataset=dataset
optNet.eval()
if 'train.fine.point_render' in config:
raster_settings_silhouette = PointsRasterizationSettings(
image_size=(H,W),
radius=config.get_float('train.fine.point_render.radius'),
# radius=0.002,
bin_size=64,
points_per_pixel=50,
)
optNet.pcRender=PointsRenderer(
rasterizer=PointsRasterizer(
cameras=optNet.maskRender.rasterizer.cameras,
raster_settings=raster_settings_silhouette
),
compositor=AlphaCompositor(background_color=(1,1,1,1))
).to(device)
# ratio={'sdfRatio':1.,'deformerRatio':0.5,'renderRatio':1.}
ratio={'sdfRatio':1.,'deformerRatio':1.,'renderRatio':1.}
TmpVs_list,Tmpfs_list=optNet.discretizeSDF(ratio,None,0.)
# writing body vertices
body_TmpVs, bodyTmpfs = TmpVs_list[0], Tmpfs_list[0]
mesh = om.TriMesh(body_TmpVs.detach().cpu().numpy(), bodyTmpfs.cpu().numpy())
om.write_mesh(osp.join(args.rec_root,'tmp_body.ply'),mesh)
if os.path.exists( os.path.join(args.rec_root, 'modified.ply')):
trm_ply = trimesh.load(os.path.join(args.rec_root, 'modified.ply'))
verts = torch.from_numpy(trm_ply.vertices).float().cuda()
faces = torch.from_numpy(trm_ply.faces).long().cuda()
TmpVs_list[1] = verts
Tmpfs_list[1] = faces
garment_TmpVs, garment_Tmpfs = TmpVs_list[1:], Tmpfs_list[1:]
os.makedirs(osp.join(args.rec_root,'fl_meshs'),exist_ok=True)
errors={}
errors['maskE']=-1.*np.ones((len(dataset)))
gts={}
optNet.registry_meshes = None
for data_index, (frame_ids, outs) in enumerate(dataloader):
if data_index*batch_size > args.frames if args.frames>=0 else False:
break
imgs=outs['img']
masks=outs['mask']
if args.nColor:
print(data_index*batch_size)
else:
print(data_index*batch_size,end=' ')
frame_ids=frame_ids.long().to(device)
gts['mask']=masks.to(device)
if args.C:
gts['image']=(imgs.to(device)+1.)/2.
# colors_list,imgs_list,def1imgs_list,defVs_list, smpl_list=optNet.infer_garment(garment_TmpVs,garment_Tmpfs, dataset.H, dataset.W,ratio,frame_ids,args.nColor,gts, args.rec_root)
curve_mesh =optNet.infer_garment_fl(garment_TmpVs,garment_Tmpfs, dataset.H, dataset.W,ratio,frame_ids,args.nColor,gts, args.rec_root)
fid= frame_ids[0].item()
curve_mesh.export(osp.join(args.rec_root,'fl_meshs/{:06d}.obj'.format(fid)))
print(osp.join(args.rec_root,'fl_meshs/{:06d}.obj'.format(fid)))