diff --git a/404.html b/404.html
index 0f0602e..153dc10 100644
--- a/404.html
+++ b/404.html
@@ -5,7 +5,7 @@
Page Not Found | 大语言模型(Large Language Models)
-
+
diff --git a/assets/files/lecture06-part1-36aa1df812e1c3cc8e73667639842afa.pdf b/assets/files/lecture06-part1-36aa1df812e1c3cc8e73667639842afa.pdf
new file mode 100644
index 0000000..029e36a
Binary files /dev/null and b/assets/files/lecture06-part1-36aa1df812e1c3cc8e73667639842afa.pdf differ
diff --git a/assets/files/lecture06-part2-45e1e95eb75aa84b3b0da64a241c15b5.pdf b/assets/files/lecture06-part2-45e1e95eb75aa84b3b0da64a241c15b5.pdf
new file mode 100644
index 0000000..4d80896
Binary files /dev/null and b/assets/files/lecture06-part2-45e1e95eb75aa84b3b0da64a241c15b5.pdf differ
diff --git a/assets/js/04754ec0.c8deb142.js b/assets/js/04754ec0.c8deb142.js
new file mode 100644
index 0000000..ef8ef59
--- /dev/null
+++ b/assets/js/04754ec0.c8deb142.js
@@ -0,0 +1 @@
+"use strict";(self.webpackChunkmy_website=self.webpackChunkmy_website||[]).push([[1451],{5561:(e,t,n)=>{n.r(t),n.d(t,{assets:()=>c,contentTitle:()=>a,default:()=>d,frontMatter:()=>i,metadata:()=>o,toc:()=>l});var r=n(4848),s=n(8453);const i={sidebar_position:6},a="Evaluation",o={id:"lectures/evaluation",title:"Evaluation",description:"\u8bfe\u7a0b\u5927\u7eb2",source:"@site/docs/lectures/6-evaluation.md",sourceDirName:"lectures",slug:"/lectures/evaluation",permalink:"/cs2916/docs/lectures/evaluation",draft:!1,unlisted:!1,editUrl:"https://github.com/facebook/docusaurus/tree/main/packages/create-docusaurus/templates/shared/docs/lectures/6-evaluation.md",tags:[],version:"current",sidebarPosition:6,frontMatter:{sidebar_position:6},sidebar:"tutorialSidebar",previous:{title:"Prompting Engineering",permalink:"/cs2916/docs/lectures/prompting-engineering"},next:{title:"Supervised Finetuning and Instruction Tuning",permalink:"/cs2916/docs/lectures/instruction-tuning"}},c={},l=[{value:"\u8bfe\u7a0b\u5927\u7eb2",id:"\u8bfe\u7a0b\u5927\u7eb2",level:2},{value:"\u63a8\u8350\u9605\u8bfb\u6750\u6599",id:"\u63a8\u8350\u9605\u8bfb\u6750\u6599",level:2}];function u(e){const t={a:"a",h1:"h1",h2:"h2",li:"li",ul:"ul",...(0,s.R)(),...e.components};return(0,r.jsxs)(r.Fragment,{children:[(0,r.jsx)(t.h1,{id:"evaluation",children:"Evaluation"}),"\n",(0,r.jsx)(t.h2,{id:"\u8bfe\u7a0b\u5927\u7eb2",children:"\u8bfe\u7a0b\u5927\u7eb2"}),"\n",(0,r.jsxs)(t.ul,{children:["\n",(0,r.jsxs)(t.li,{children:["\u63d0\u793a\u5b66\u4e60 2.0 [",(0,r.jsx)(t.a,{target:"_blank","data-noBrokenLinkCheck":!0,href:n(9268).A+"",children:"\u8bfe\u4ef6"}),"]"]}),"\n",(0,r.jsxs)(t.li,{children:["\u673a\u5668\u5b66\u4e60\u6a21\u578b\u8bc4\u4f30\u57fa\u7840 [",(0,r.jsx)(t.a,{target:"_blank","data-noBrokenLinkCheck":!0,href:n(1435).A+"",children:"\u8bfe\u4ef6"}),"]"]}),"\n"]}),"\n",(0,r.jsx)(t.h2,{id:"\u63a8\u8350\u9605\u8bfb\u6750\u6599",children:"\u63a8\u8350\u9605\u8bfb\u6750\u6599"}),"\n",(0,r.jsxs)(t.ul,{children:["\n",(0,r.jsxs)(t.li,{children:["[\u8bba\u6587]",(0,r.jsx)(t.a,{href:"https://arxiv.org/pdf/2107.13586.pdf",children:"Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing"})]}),"\n",(0,r.jsxs)(t.li,{children:["[\u8bba\u6587]",(0,r.jsx)(t.a,{href:"https://arxiv.org/abs/1904.09675",children:"BERTScore: Evaluating Text Generation with BERT"})]}),"\n",(0,r.jsxs)(t.li,{children:["[\u8bba\u6587]",(0,r.jsx)(t.a,{href:"https://arxiv.org/abs/2106.11520",children:"BARTScore: Evaluating Generated Text as Text Generation"})]}),"\n",(0,r.jsxs)(t.li,{children:["[\u8bba\u6587]",(0,r.jsx)(t.a,{href:"https://arxiv.org/abs/2302.04166",children:"GPTScore: Evaluate as You Desire"})]}),"\n"]})]})}function d(e={}){const{wrapper:t}={...(0,s.R)(),...e.components};return t?(0,r.jsx)(t,{...e,children:(0,r.jsx)(u,{...e})}):u(e)}},9268:(e,t,n)=>{n.d(t,{A:()=>r});const r=n.p+"assets/files/lecture06-part1-36aa1df812e1c3cc8e73667639842afa.pdf"},1435:(e,t,n)=>{n.d(t,{A:()=>r});const r=n.p+"assets/files/lecture06-part2-45e1e95eb75aa84b3b0da64a241c15b5.pdf"},8453:(e,t,n)=>{n.d(t,{R:()=>a,x:()=>o});var r=n(6540);const s={},i=r.createContext(s);function a(e){const t=r.useContext(i);return r.useMemo((function(){return"function"==typeof e?e(t):{...t,...e}}),[t,e])}function o(e){let t;return t=e.disableParentContext?"function"==typeof e.components?e.components(s):e.components||s:a(e.components),r.createElement(i.Provider,{value:t},e.children)}}}]);
\ No newline at end of file
diff --git a/assets/js/935f2afb.87073106.js b/assets/js/935f2afb.87073106.js
new file mode 100644
index 0000000..cb1ec81
--- /dev/null
+++ b/assets/js/935f2afb.87073106.js
@@ -0,0 +1 @@
+"use strict";(self.webpackChunkmy_website=self.webpackChunkmy_website||[]).push([[8581],{5610:e=>{e.exports=JSON.parse('{"pluginId":"default","version":"current","label":"Next","banner":null,"badge":false,"noIndex":false,"className":"docs-version-current","isLast":true,"docsSidebars":{"tutorialSidebar":[{"type":"link","label":"\u8bfe\u7a0b\u4ecb\u7ecd","href":"/cs2916/docs/intro","docId":"intro","unlisted":false},{"type":"category","label":"\u8bfe\u7a0b\u5927\u7eb2","collapsible":true,"collapsed":true,"items":[{"type":"link","label":"Why LLMs?","href":"/cs2916/docs/lectures/why-llms","docId":"lectures/why-llms","unlisted":false},{"type":"link","label":"Neural networks and deep learning basics","href":"/cs2916/docs/lectures/nn-basics","docId":"lectures/nn-basics","unlisted":false},{"type":"link","label":"Language Models and Representation Learning","href":"/cs2916/docs/lectures/lms","docId":"lectures/lms","unlisted":false},{"type":"link","label":"Transformers and Pretrained Langauge Models","href":"/cs2916/docs/lectures/transformers","docId":"lectures/transformers","unlisted":false},{"type":"link","label":"Prompting Engineering","href":"/cs2916/docs/lectures/prompting-engineering","docId":"lectures/prompting-engineering","unlisted":false},{"type":"link","label":"Evaluation","href":"/cs2916/docs/lectures/evaluation","docId":"lectures/evaluation","unlisted":false},{"type":"link","label":"Supervised Finetuning and Instruction Tuning","href":"/cs2916/docs/lectures/instruction-tuning","docId":"lectures/instruction-tuning","unlisted":false},{"type":"link","label":"Reward Model and RLHF","href":"/cs2916/docs/lectures/rm-rlhf","docId":"lectures/rm-rlhf","unlisted":false},{"type":"link","label":"Alignment and AI Safety","href":"/cs2916/docs/lectures/alignment","docId":"lectures/alignment","unlisted":false},{"type":"link","label":"Retrieval Augmented Generation","href":"/cs2916/docs/lectures/rag","docId":"lectures/rag","unlisted":false},{"type":"link","label":"Agents","href":"/cs2916/docs/lectures/agents","docId":"lectures/agents","unlisted":false},{"type":"link","label":"Long-context LLM","href":"/cs2916/docs/lectures/long-context","docId":"lectures/long-context","unlisted":false},{"type":"link","label":"Multi-modal LLM","href":"/cs2916/docs/lectures/multimodal","docId":"lectures/multimodal","unlisted":false},{"type":"link","label":"Presentation","href":"/cs2916/docs/lectures/presentation","docId":"lectures/presentation","unlisted":false},{"type":"link","label":"Presentation","href":"/cs2916/docs/lectures/presentation","docId":"lectures/presentation","unlisted":false},{"type":"link","label":"Poster","href":"/cs2916/docs/lectures/poster","docId":"lectures/poster","unlisted":false}],"href":"/cs2916/docs/category/\u8bfe\u7a0b\u5927\u7eb2"},{"type":"link","label":"\u5b89\u6392\u8868","href":"/cs2916/docs/schedule","docId":"schedule","unlisted":false},{"type":"link","label":"\u8bfe\u7a0b\u4f5c\u4e1a","href":"/cs2916/docs/homework","docId":"homework","unlisted":false}]},"docs":{"homework":{"id":"homework","title":"\u8bfe\u7a0b\u4f5c\u4e1a","description":"\u4f5c\u4e1a\u8bbe\u8ba1\u7684\u76ee\u7684\u548c\u7406\u5ff5\u4e3b\u8981\u53c2\u8003CMU CS11747\u8bfe\u7a0b\u3002\u4e0d\u4ec5\u7406\u89e3\u5173\u4e8e\u5927\u6a21\u578b\u76f8\u5173\u7684\u91cd\u8981\u6982\u5ff5\uff0c\u8fd8\u80fd\u5b9e\u73b0\u4e00\u4e9b\u91cd\u8981\u6280\u672f\uff0c\u5e76\u4e14\u57f9\u517b","sidebar":"tutorialSidebar"},"intro":{"id":"intro","title":"\u8bfe\u7a0b\u4ecb\u7ecd","description":"\u65f6\u95f4/\u5730\u70b9","sidebar":"tutorialSidebar"},"lectures/agents":{"id":"lectures/agents","title":"Agents","description":"Outline","sidebar":"tutorialSidebar"},"lectures/alignment":{"id":"lectures/alignment","title":"Alignment and AI Safety","description":"Outline","sidebar":"tutorialSidebar"},"lectures/evaluation":{"id":"lectures/evaluation","title":"Evaluation","description":"\u8bfe\u7a0b\u5927\u7eb2","sidebar":"tutorialSidebar"},"lectures/instruction-tuning":{"id":"lectures/instruction-tuning","title":"Supervised Finetuning and Instruction Tuning","description":"Outline","sidebar":"tutorialSidebar"},"lectures/lms":{"id":"lectures/lms","title":"Language Models and Representation Learning","description":"\u8bfe\u7a0b\u5927\u7eb2","sidebar":"tutorialSidebar"},"lectures/long-context":{"id":"lectures/long-context","title":"Long-context LLM","description":"Outline","sidebar":"tutorialSidebar"},"lectures/multimodal":{"id":"lectures/multimodal","title":"Multi-modal LLM","description":"Outline","sidebar":"tutorialSidebar"},"lectures/nn-basics":{"id":"lectures/nn-basics","title":"Neural networks and deep learning basics","description":"\u8bfe\u7a0b\u5927\u7eb2","sidebar":"tutorialSidebar"},"lectures/poster":{"id":"lectures/poster","title":"Poster","description":"Recommended Material","sidebar":"tutorialSidebar"},"lectures/presentation":{"id":"lectures/presentation","title":"Presentation","description":"Recommended Material","sidebar":"tutorialSidebar"},"lectures/prompting-engineering":{"id":"lectures/prompting-engineering","title":"Prompting Engineering","description":"\u8bfe\u7a0b\u5927\u7eb2","sidebar":"tutorialSidebar"},"lectures/rag":{"id":"lectures/rag","title":"Retrieval Augmented Generation","description":"Outline","sidebar":"tutorialSidebar"},"lectures/rm-rlhf":{"id":"lectures/rm-rlhf","title":"Reward Model and RLHF","description":"Outline","sidebar":"tutorialSidebar"},"lectures/transformers":{"id":"lectures/transformers","title":"Transformers and Pretrained Langauge Models","description":"\u8bfe\u7a0b\u5927\u7eb2","sidebar":"tutorialSidebar"},"lectures/why-llms":{"id":"lectures/why-llms","title":"Why LLMs?","description":"\u8bfe\u7a0b\u5927\u7eb2","sidebar":"tutorialSidebar"},"schedule":{"id":"schedule","title":"\u5b89\u6392\u8868","description":"|Week|Date |Content |Homework| Lecturer |","sidebar":"tutorialSidebar"}}}')}}]);
\ No newline at end of file
diff --git a/assets/js/runtime~main.8a4c75db.js b/assets/js/runtime~main.8a4c75db.js
new file mode 100644
index 0000000..78d2787
--- /dev/null
+++ b/assets/js/runtime~main.8a4c75db.js
@@ -0,0 +1 @@
+(()=>{"use strict";var e,a,c,f,t,b={},r={};function d(e){var a=r[e];if(void 0!==a)return a.exports;var c=r[e]={id:e,loaded:!1,exports:{}};return b[e].call(c.exports,c,c.exports,d),c.loaded=!0,c.exports}d.m=b,d.c=r,e=[],d.O=(a,c,f,t)=>{if(!c){var b=1/0;for(i=0;i=t)&&Object.keys(d.O).every((e=>d.O[e](c[o])))?c.splice(o--,1):(r=!1,t0&&e[i-1][2]>t;i--)e[i]=e[i-1];e[i]=[c,f,t]},d.n=e=>{var a=e&&e.__esModule?()=>e.default:()=>e;return d.d(a,{a:a}),a},c=Object.getPrototypeOf?e=>Object.getPrototypeOf(e):e=>e.__proto__,d.t=function(e,f){if(1&f&&(e=this(e)),8&f)return e;if("object"==typeof e&&e){if(4&f&&e.__esModule)return e;if(16&f&&"function"==typeof e.then)return e}var t=Object.create(null);d.r(t);var b={};a=a||[null,c({}),c([]),c(c)];for(var r=2&f&&e;"object"==typeof r&&!~a.indexOf(r);r=c(r))Object.getOwnPropertyNames(r).forEach((a=>b[a]=()=>e[a]));return b.default=()=>e,d.d(t,b),t},d.d=(e,a)=>{for(var c in a)d.o(a,c)&&!d.o(e,c)&&Object.defineProperty(e,c,{enumerable:!0,get:a[c]})},d.f={},d.e=e=>Promise.all(Object.keys(d.f).reduce(((a,c)=>(d.f[c](e,a),a)),[])),d.u=e=>"assets/js/"+({1451:"04754ec0",1581:"4bf23fba",1697:"98d3bd04",1775:"d41ed5cf",1912:"b17b9b9e",1972:"73664a40",2324:"914e89c0",2532:"9103250a",2568:"42256e30",2634:"c4f5d8e4",2711:"9e4087bc",2731:"6c62225f",2988:"a8050b87",3171:"5df0f483",3249:"ccc49370",3429:"cb08307a",3637:"f4f34a3a",3694:"8717b14a",3903:"7c7f3a5f",3976:"0e384e19",4134:"393be207",4298:"4bfae872",4507:"1e57fe0e",4601:"ccdec9a2",4608:"3ee820a1",4785:"27620256",4813:"6875c492",4949:"4584b7f0",4963:"847d4dbc",5267:"721798f6",5557:"d9f32620",6052:"758272e9",6061:"1f391b9e",6139:"9cb9e592",6321:"a2189d2e",6324:"8d30b3c2",6956:"b62a5960",6969:"14eb3368",7098:"a7bd4aaa",7123:"0db292d5",7198:"384c8388",7252:"38feca5b",7472:"814f3328",7643:"a6aa9e1f",7817:"ab3eb4e2",7997:"34f2080c",8043:"d60eb856",8086:"2b30cce5",8209:"01a85c17",8328:"7513c53f",8401:"17896441",8581:"935f2afb",8609:"925b3f96",8737:"7661071f",9048:"a94703ab",9325:"59362658",9328:"e273c56f",9647:"5e95c892"}[e]||e)+"."+{1451:"c8deb142",1581:"099ef2a2",1697:"4e0f2705",1775:"0d3211f3",1912:"bb6a5f8c",1972:"3581b3d5",2237:"9f327e60",2324:"aee94c66",2532:"f180362d",2568:"76bc473f",2634:"ad1a2a1f",2711:"dfabb06b",2731:"fc67a006",2988:"f439063c",3171:"341541f7",3249:"e7a3b8d3",3429:"da707d90",3637:"87679e27",3694:"6388ae25",3903:"4919bb10",3976:"b7d4d6a8",4134:"443994f8",4298:"dd8bcfe1",4507:"9a389c13",4601:"436403d2",4608:"e4b99084",4785:"ce6c68f7",4813:"ebebfc27",4949:"5d5b2d2f",4963:"52b48f4c",5267:"4daebcd2",5533:"c717b762",5557:"1807ef37",6052:"0725c796",6061:"df3efc6a",6139:"ea57ba76",6321:"15d622d1",6324:"a1eedaa7",6956:"155f5abf",6969:"091afeae",7098:"ad7f231a",7123:"227ab0fc",7198:"4defab78",7252:"b91d3d80",7472:"2491a76d",7643:"249e747a",7817:"0eaa56eb",7997:"9d980d4b",8043:"44631499",8086:"2e3a0066",8209:"deb72329",8328:"5e1f21dd",8401:"9749c064",8581:"87073106",8609:"71388d94",8737:"3a8d6dc7",8747:"a256fe95",9048:"025ff6ec",9325:"9858f974",9328:"9f99607a",9647:"d2840d6b"}[e]+".js",d.miniCssF=e=>{},d.g=function(){if("object"==typeof globalThis)return globalThis;try{return this||new Function("return this")()}catch(e){if("object"==typeof window)return window}}(),d.o=(e,a)=>Object.prototype.hasOwnProperty.call(e,a),f={},t="my-website:",d.l=(e,a,c,b)=>{if(f[e])f[e].push(a);else{var r,o;if(void 0!==c)for(var n=document.getElementsByTagName("script"),i=0;i{r.onerror=r.onload=null,clearTimeout(s);var t=f[e];if(delete f[e],r.parentNode&&r.parentNode.removeChild(r),t&&t.forEach((e=>e(c))),a)return a(c)},s=setTimeout(l.bind(null,void 0,{type:"timeout",target:r}),12e4);r.onerror=l.bind(null,r.onerror),r.onload=l.bind(null,r.onload),o&&document.head.appendChild(r)}},d.r=e=>{"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(e,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(e,"__esModule",{value:!0})},d.p="/cs2916/",d.gca=function(e){return e={17896441:"8401",27620256:"4785",59362658:"9325","04754ec0":"1451","4bf23fba":"1581","98d3bd04":"1697",d41ed5cf:"1775",b17b9b9e:"1912","73664a40":"1972","914e89c0":"2324","9103250a":"2532","42256e30":"2568",c4f5d8e4:"2634","9e4087bc":"2711","6c62225f":"2731",a8050b87:"2988","5df0f483":"3171",ccc49370:"3249",cb08307a:"3429",f4f34a3a:"3637","8717b14a":"3694","7c7f3a5f":"3903","0e384e19":"3976","393be207":"4134","4bfae872":"4298","1e57fe0e":"4507",ccdec9a2:"4601","3ee820a1":"4608","6875c492":"4813","4584b7f0":"4949","847d4dbc":"4963","721798f6":"5267",d9f32620:"5557","758272e9":"6052","1f391b9e":"6061","9cb9e592":"6139",a2189d2e:"6321","8d30b3c2":"6324",b62a5960:"6956","14eb3368":"6969",a7bd4aaa:"7098","0db292d5":"7123","384c8388":"7198","38feca5b":"7252","814f3328":"7472",a6aa9e1f:"7643",ab3eb4e2:"7817","34f2080c":"7997",d60eb856:"8043","2b30cce5":"8086","01a85c17":"8209","7513c53f":"8328","935f2afb":"8581","925b3f96":"8609","7661071f":"8737",a94703ab:"9048",e273c56f:"9328","5e95c892":"9647"}[e]||e,d.p+d.u(e)},(()=>{var e={5354:0,1869:0};d.f.j=(a,c)=>{var f=d.o(e,a)?e[a]:void 0;if(0!==f)if(f)c.push(f[2]);else if(/^(1869|5354)$/.test(a))e[a]=0;else{var t=new Promise(((c,t)=>f=e[a]=[c,t]));c.push(f[2]=t);var b=d.p+d.u(a),r=new Error;d.l(b,(c=>{if(d.o(e,a)&&(0!==(f=e[a])&&(e[a]=void 0),f)){var t=c&&("load"===c.type?"missing":c.type),b=c&&c.target&&c.target.src;r.message="Loading chunk "+a+" failed.\n("+t+": "+b+")",r.name="ChunkLoadError",r.type=t,r.request=b,f[1](r)}}),"chunk-"+a,a)}},d.O.j=a=>0===e[a];var a=(a,c)=>{var f,t,b=c[0],r=c[1],o=c[2],n=0;if(b.some((a=>0!==e[a]))){for(f in r)d.o(r,f)&&(d.m[f]=r[f]);if(o)var i=o(d)}for(a&&a(c);n
Archive | 大语言模型(Large Language Models)
-
+
diff --git a/blog/first-blog-post/index.html b/blog/first-blog-post/index.html
index 3ea6382..fe2f4c2 100644
--- a/blog/first-blog-post/index.html
+++ b/blog/first-blog-post/index.html
@@ -5,7 +5,7 @@
First Blog Post | 大语言模型(Large Language Models)
-
+
diff --git a/blog/index.html b/blog/index.html
index 9388cc0..5d3e33d 100644
--- a/blog/index.html
+++ b/blog/index.html
@@ -5,7 +5,7 @@
Blog | 大语言模型(Large Language Models)
-
+
diff --git a/blog/long-blog-post/index.html b/blog/long-blog-post/index.html
index a064c12..32e6211 100644
--- a/blog/long-blog-post/index.html
+++ b/blog/long-blog-post/index.html
@@ -5,7 +5,7 @@
Long Blog Post | 大语言模型(Large Language Models)
-
+
diff --git a/blog/mdx-blog-post/index.html b/blog/mdx-blog-post/index.html
index 84dac35..d831010 100644
--- a/blog/mdx-blog-post/index.html
+++ b/blog/mdx-blog-post/index.html
@@ -5,7 +5,7 @@
MDX Blog Post | 大语言模型(Large Language Models)
-
+
diff --git a/blog/tags/docusaurus/index.html b/blog/tags/docusaurus/index.html
index ec7abd6..4f40e8c 100644
--- a/blog/tags/docusaurus/index.html
+++ b/blog/tags/docusaurus/index.html
@@ -5,7 +5,7 @@
4 posts tagged with "docusaurus" | 大语言模型(Large Language Models)
-
+
diff --git a/blog/tags/facebook/index.html b/blog/tags/facebook/index.html
index bdb5438..35ef1d5 100644
--- a/blog/tags/facebook/index.html
+++ b/blog/tags/facebook/index.html
@@ -5,7 +5,7 @@
One post tagged with "facebook" | 大语言模型(Large Language Models)
-
+
diff --git a/blog/tags/hello/index.html b/blog/tags/hello/index.html
index 3c5b603..8b85920 100644
--- a/blog/tags/hello/index.html
+++ b/blog/tags/hello/index.html
@@ -5,7 +5,7 @@
2 posts tagged with "hello" | 大语言模型(Large Language Models)
-
+
diff --git a/blog/tags/hola/index.html b/blog/tags/hola/index.html
index b3c7909..1a0ba12 100644
--- a/blog/tags/hola/index.html
+++ b/blog/tags/hola/index.html
@@ -5,7 +5,7 @@
One post tagged with "hola" | 大语言模型(Large Language Models)
-
+
diff --git a/blog/tags/index.html b/blog/tags/index.html
index d5200c9..03965ba 100644
--- a/blog/tags/index.html
+++ b/blog/tags/index.html
@@ -5,7 +5,7 @@
Tags | 大语言模型(Large Language Models)
-
+
diff --git a/blog/welcome/index.html b/blog/welcome/index.html
index 1f3847e..508f6a4 100644
--- a/blog/welcome/index.html
+++ b/blog/welcome/index.html
@@ -5,7 +5,7 @@
Welcome | 大语言模型(Large Language Models)
-
+
diff --git "a/docs/category/\350\257\276\347\250\213\345\244\247\347\272\262/index.html" "b/docs/category/\350\257\276\347\250\213\345\244\247\347\272\262/index.html"
index 274cbb0..13142eb 100644
--- "a/docs/category/\350\257\276\347\250\213\345\244\247\347\272\262/index.html"
+++ "b/docs/category/\350\257\276\347\250\213\345\244\247\347\272\262/index.html"
@@ -5,10 +5,10 @@
课程大纲 | 大语言模型(Large Language Models)
-
+
-课程大纲
《大语言模型》CS2916@SJTU的课程大纲
+课程大纲
《大语言模型》CS2916@SJTU的课程大纲