forked from terryum/awesome-deep-learning-papers
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathget_authors.py
108 lines (90 loc) · 3.35 KB
/
get_authors.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
# coding: utf-8
import re
import requests
from html.parser import HTMLParser
import codecs
search_engine="https://www.semanticscholar.org/search?q="
post_fix = "&sort=relevance&ae=false"
class AuthorParser( HTMLParser ):
tail_string = "" #contains the last tag's name which point to author field
m_Stop = False
m_authors = []
def handle_starttag(self, tag, attr):
if self.m_Stop:
return
if tag == 'article':
self.tail_string += tag
return
if self.tail_string != "":
#print("search already kick-off")
self.tail_string = self.tail_string+"."+tag
#print(self.tail_string)
def handle_endtag(self, tag):
if self.m_Stop :
return
if self.tail_string == "article":
# ONLY handle the first article
self.m_Stop = True
if self.tail_string != "":
tags = self.tail_string.split('.')
tags.reverse()
for t in tags:
if t == tag:
tags.remove(t)
break
self.tail_string = ""
tags.reverse()
for i,t in enumerate(tags):
self.tail_string = self.tail_string + "." + t if i > 0 else t
def handle_data(self, data):
if self.m_Stop:
return
if self.tail_string == "article.header.ul.li.span.span.a.span.span":
#print(data)
self.m_authors.append(data)
def get_authors(self):
return self.m_authors
def clean(self):
self.m_authors = []
self.tail_string= ""
self.m_Stop = False
def getPaperNames( readme_file ):
paper_list = []
with codecs.open( readme_file,encoding='utf-8',mode='r',buffering = 1, errors='strict' ) as f:
lines = f.read().split('\n')
heading, section_path = '', ''
for line in lines:
if('###' in line):
heading = line.strip().split('###')[1]
heading = heading.replace('/', '|')
if('[[pdf]]' in line):
# The stars ensure you pick up only the top 100 papers
# Modify the expression if you want to fetch all other papers as well
result = re.search('\*\*(.*?)\*\*.*?\[\[pdf\]\]\((.*?)\)', line)
if(result):
paper, url = result.groups()
paper_list.append(paper)
return paper_list
all_papers = getPaperNames("README.md")
author_parser = AuthorParser()
author_dict = {}
for index,paper in enumerate(all_papers):
paper.replace(" ", "%20")
search_result = requests.get(search_engine + paper + post_fix)
author_parser.feed(search_result.text)
#print( paper, '==>', author_parser.get_authors() )
authors = author_parser.get_authors()
for weight, author in enumerate( authors):
if author not in author_dict.keys():
author_dict[author] = []
author_dict[author].append( (weight+1,paper))
author_parser.clean()
print("Processed %d |"%(index), paper)
# example usage of author information
with open( "author.csv",'w') as fcsv:
for (author, papers) in author_dict.items():
score = 0.0
for (weight, paper) in papers:
score += 1.0/weight
print(author," score: %.2f"%score)
fcsv.write( author+','+"%.2f"%score)