-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathData_workflow.jl
439 lines (375 loc) · 16.2 KB
/
Data_workflow.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
using PolaronMobility
using Statistics
using LinearAlgebra
using CSV
using Unitful
using Gnuplot
using DataFrames
function load_file(file)
"""
load_file(file)
Reads the contents of a file and returns the data.
# Arguments
- `file` (string): The path to the file to be read.
# Returns
- `data` (string): The contents of the file.
"""
open(file) do f
data = read(f)
return data
end
end
function variable_cal(data)
"""
variable_cal(data)
The `variable_cal` function takes in a data array as input and returns a modified version of the data array.
# Arguments
- `data` (array): An array containing data elements.
# Returns
A tuple containing the modified elements of the input data array.
"""
return data[1], data[2], data[3], data[4], data[5] * 0.2417990504024, data[6], data[7], data[8] # constant for unit conversion form meV to THz
end
function looping(data)
"""
looping(data)
The `looping` function takes in an array of data and iterates over each element.
For each element, it calls the `variable_cal` function to calculate some values.
It then performs some calculations and creates a material object.
If the calculations are successful, it adds the calculated values to separate arrays.
If an error occurs during the calculations, it prints an error message.
Finally, it returns the arrays containing the calculated values.
# Arguments
- `data` (array): An array containing data elements.
# Returns
- `dummy_name` (array): An array containing the names of the elements in the `data` array.
- `dummy_chem` (array): An array containing the chemical properties of the elements in the `data` array.
- `dummy_alpha` (array): An array containing the calculated alpha values.
- `dummy_ZPR` (array): An array containing the calculated ZPR values.
- `dummy_mass` (array): An array containing the calculated mass values.
- `dummy_freq` (array): An array containing the calculated frequency values.
- `dummy_alpha_paper` (array): An array containing the calculated alpha paper values.
- `dummy_res` (array): An array containing the calculated res_paper values.
"""
dummy_name = []
dummy_chem = []
dummy_alpha = []
dummy_ZPR = []
dummy_mass = []
dummy_freq = []
dummy_res = []
dummy_alpha_paper = []
for i in 1:length(data)
name, chem, eps_s, eps_o, freq, mass, res_alpha, res_paper = variable_cal(data[i])
mass = mass * mass
mat = material(eps_o, eps_s, mass, freq)
try
p = polaron(mat, v_guesses = 3.0001, w_guesses = 2.999 ,verbose = false)
addunits!(p)
ZPR = p.F0 |> u"meV"
alpha = p.α
freq = freq / 0.2417990504024
name = replace(name, " " => "")
chem = replace(chem, " " => "")
push!(dummy_name, name)
push!(dummy_chem, chem)
append!(dummy_alpha, alpha)
append!(dummy_ZPR, ZPR)
append!(dummy_mass, mass)
append!(dummy_freq, freq)
append!(dummy_res, res_paper)
append!(dummy_alpha_paper, res_alpha)
catch e
# Catch and handle the error
println("An error occurred: ", e, i, name)
end
end
return dummy_name, dummy_chem, dummy_alpha, dummy_ZPR, dummy_mass, dummy_freq, dummy_alpha_paper, dummy_res
end
function Feynman_Data()
"""
Feynman_Data() -> DataFrame
The `Feynman_Data` function reads data from Feynman Frohlich Model data file and passes it to the `looping` function.
It then performs calculations on the data and creates a DataFrame.
Finally, it writes the DataFrame to a TSV file and returns it.
"""
data = CSV.File("LiegeDataset/Results/StandardFeynmanFrohlich/conduction/standard_feynman_data_conduction.csv")
name_arr, chem_arr, alpha_arr, ZPR_arr, mass_arr, freq_arr, alpha_paper_arr, res_arr = looping(data)
error = (ustrip.(ZPR_arr) - res_arr)./res_arr * 100
column_names = ["Name", "Formula", "Mass (meV)", "Frequency (meV)", "Alpha", "Reference_Alpha", "ZPR (meV)", "Reference_ZPR (meV)", "Error"]
df_Feynman = DataFrame([name_arr, chem_arr, mass_arr, freq_arr, alpha_arr,
alpha_paper_arr, ustrip.(ZPR_arr), res_arr, error], column_names)
CSV.write("Data/Feynman.tsv", df_Feynman, delim='\t', quotechar='"', header=true)
return df_Feynman
end
function Standard_Data()
"""
Standard_Data() -> DataFrame
The `Standard_Data` function reads data from Standard Frohlich Model data file and passes it to the `looping` function.
It then performs calculations on the data and creates a DataFrame.
Finally, it writes the DataFrame to a TSV file and returns it.
"""
data_standard = CSV.File("LiegeDataset/Results/StandardFrohlich/conduction/standard_froelich_data_conduction.csv")
name_arr, chem_arr, alpha_arr, ZPR_arr, mass_arr, freq_arr, alpha_standard_arr, res_standard_arr = looping(data_standard)
error = (ustrip.(ZPR_arr) - res_standard_arr)./res_standard_arr * 100
column_names = ["Name", "Formula", "Mass (meV)", "Frequency (meV)", "Alpha", "Reference_Alpha", "ZPR (meV)", "Reference_ZPR (meV)", "Error"]
df_Standard = DataFrame([name_arr, chem_arr, mass_arr, freq_arr, alpha_arr,
alpha_standard_arr, ustrip.(ZPR_arr), res_standard_arr, error], column_names)
CSV.write("Data/Standard.tsv", df_Standard, delim='\t', quotechar='"', header=true)
return df_Standard
end
function General_Data()
"""
General_Data() -> DataFrame
The `General_Data` function reads data from General Frohlich Model data file and passes it to the `looping` function.
It then sorts the data and creates a DataFrame.
Finally, it writes the DataFrame to a TSV file and returns it.
"""
files = readdir("LiegeDataset/Results/GeneralizedFrohlich/conduction")
function general_val(data)
return data[1][1], data[1][2], data[1][4], data[1][5], data[1][6], data[1][7]
end
dummy_name = []
dummy_chem = []
dummy_mass = []
dummy_freq = []
dummy_alpha = []
dummy_ZPR = []
for i in 2:1396
data = CSV.File("LiegeDataset/Results/GeneralizedFrohlich/conduction/" * files[i])
name, chem, freq, mass, res_alpha, res_paper = general_val(data)
mass = mass * mass
name = replace(name, " " => "")
chem = replace(chem, " " => "")
push!(dummy_name, name)
push!(dummy_chem, chem)
append!(dummy_alpha, res_alpha)
append!(dummy_mass, mass)
append!(dummy_freq, freq)
append!(dummy_ZPR, res_paper)
end
column_names = ["Name", "Formula", "Mass (meV)", "Frequency (meV)", "Reference_Alpha", "Reference_ZPR (meV)"]
df_General = DataFrame([dummy_name, dummy_chem, dummy_mass, dummy_freq, dummy_alpha, dummy_ZPR], column_names)
CSV.write("Data/General.tsv", df_General, delim='\t', quotechar='"', header=true)
return df_General
end
function General_Comparison_Data(df_General)
"""
General_Comparison_Data() -> DataFrame
This function compares the data of GFM and Variational Approach.
Then it writes the DataFrame to a TSV file and returns it.
"""
dummy_name = []
dummy_chem = []
dummy_result = []
dummy_reference = []
dummy_alpha_GFr = []
dummy_alpha_variational = []
for i in df_General[:, "Name"]
for j in df_Feynman[:, "Name"]
if i == j
push!(dummy_name, i)
push!(dummy_chem, df_General[df_General.Name.==i, "Formula"][1])
append!(dummy_alpha_variational, df_Feynman[df_Feynman.Name.==i, "Alpha"])
append!(dummy_alpha_GFr, df_General[df_General.Name.==i, "Reference_Alpha"])
append!(dummy_result, df_Feynman[df_Feynman.Name.==i, "ZPR"])
append!(dummy_reference, df_General[df_General.Name.==i, "Reference_ZPR"])
end
end
end
Error = (dummy_result - dummy_reference)./dummy_reference * 100
column_names = ["Name", "Formula", "Alpha", "Reference_Alpha", "ZPR (meV)", "Reference_ZPR (meV)", "Error"]
df_General_final = DataFrame([dummy_name, dummy_chem, dummy_alpha_variational, dummy_alpha_GFr, dummy_result, dummy_reference, Error], column_names)
CSV.write("Data/General_comparison.tsv", df_General_final, delim='\t', quotechar='"', header=true)
return df_General_final
end
# Function not in use. See multiprocessing_functions.jl
function multi_mode()
"""
multi_mode() -> DataFrame
The `multi_mode` function reads data from General Frohlich Model data file and passes it to the multi-mode polaron calculation (similar to "looping" function).
It writes the DataFrame to a TSV file and returns it.
"""
ħ = 1.054571817e-34
kB = 1.380649e-23
files = readdir("LiegeDataset/Results/GeneralizedFrohlich/conduction")
function general_val(data)
return data[:, 1], data[:, 3], data[:, 4], data[:, 5], data[:, 6]
end
dummy_name = []
dummy_freq = []
dummy_alpha = []
dummy_ZPR = []
dummy_result = []
#for i in 1396:length(files)
#mp-10086
for i in 1405
data = CSV.File("LiegeDataset/Results/GeneralizedFrohlich/conduction/" * files[i], delim = "\t") |> DataFrame
mode, freq, res_alpha, res_paper, area = general_val(data)
freq = res_paper ./ res_alpha
non_zero_index = .!isnan.(freq) .& .!isinf.(freq) .& (freq .!= 0)
println(non_zero_index)
#non_zero_index = Bool[0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1]
#non_zero_index = Bool[0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1]
for i in 1:length(res_alpha)
if res_alpha[i] < 1e-8
non_zero_index[i] = 0
end
end
freq = freq[non_zero_index]
res_alpha = res_alpha[non_zero_index]
#res_paper = res_paper[non_zero_index]
freq_actual = -freq * 0.2417990504024
println(non_zero_index)
println(i, files[i], freq_actual, res_alpha, res_paper)
if length(freq) == 1
p = polaron(res_alpha[1], ω = freq_actual[1], β0 = ħ/kB*1e12*2π)
#p = polaron(res_alpha[1], 0, ω = freq_actual[1], β0 = ħ/kB*1e12*2π, v_guesses = 3.0001, w_guesses = 2.999)
elseif length(freq) == 0
return
else
p = polaron(res_alpha', ω = freq_actual, β0 = ħ/kB*1e12*2π)
#p = polaron(res_alpha', 0, ω = freq_actual, β0 = ħ/kB*1e12*2π, v_guesses = 3.0001, w_guesses = 2.999)
end
addunits!(p)
ZPR = p.F0 |> u"meV"
ZPR = ustrip(ZPR)
parts = split(files[i], '-')
name = join(parts[1:2], '-')
push!(dummy_name, name)
append!(dummy_alpha, sum(res_alpha))
append!(dummy_freq, (sum(freq)*(4 * pi * area[1]))^(-2))
append!(dummy_result, ZPR)
append!(dummy_ZPR, sum(res_paper))
end
column_names = ["Name", "Average_Frequency (meV)", "ZPR (meV)", "Reference_Alpha", "Reference_ZPR (meV)"]
df_General = DataFrame([dummy_name, dummy_freq, dummy_result, dummy_alpha, dummy_ZPR], column_names)
CSV.write("Data/multi_mode_test.tsv", df_General, delim='\t', quotechar='"', header=true)
return df_General
end
function general_val_multi(data)
return data[1][1], data[1][2], data[1][3], data[1][4], data[1][5]
end
function multi_mode_sorting(mode = 0)
if mode == 0
files = readdir("Data/multi_mode")
elseif mode == 1
files = readdir("Data/multi_mode_zero_K")
end
dummy_name = []
dummy_freq = []
dummy_ZPR = []
dummy_alpha = []
dummy_ZPR_paper = []
for i in 1:length(files)
if mode == 0
data = CSV.File("Data/multi_mode/" * files[i])
elseif mode == 1
data = CSV.File("Data/multi_mode_zero_K/" * files[i])
end
name, freq, ZPR, alpha, ZPR_paper = general_val_multi(data)
push!(dummy_name, name)
append!(dummy_ZPR, ZPR)
append!(dummy_alpha, alpha)
append!(dummy_freq, freq)
append!(dummy_ZPR_paper, ZPR_paper)
end
column_names = ["Name", "Average_Frequency (meV)", "ZPR (meV)", "Reference_Alpha", "Reference_ZPR (meV)"]
df_multi_mode = DataFrame([dummy_name, dummy_freq, dummy_ZPR, dummy_alpha, dummy_ZPR_paper], column_names)
if mode == 0
CSV.write("Data/multi_mode.tsv", df_multi_mode, delim='\t', quotechar='"', header=true)
elseif mode == 1
CSV.write("Data/multi_mode_zero_K.tsv", df_multi_mode, delim='\t', quotechar='"', header=true)
end
return df_multi_mode
end
function multi_single_comparison()
data_multi = CSV.File("Data/multi_mode.tsv")
data_single = CSV.File("Data/Standard.tsv")
dummy_name = []
dummy_ZPR_single = []
dummy_alpha_single = []
dummy_ZPR_multi = []
dummy_alpha_multi = []
dummy_error = []
for i in data_multi
for j in data_single
if i[1] == j[1]
name, ZPR_multi, ZPR_single, α_multi, α_single = i[1], i[3], j[7], i[4], j[5]
error = (ZPR_multi - ZPR_single) / ZPR_single * 100
push!(dummy_name, name)
append!(dummy_ZPR_single, ZPR_single)
append!(dummy_ZPR_multi, ZPR_multi)
append!(dummy_alpha_multi, α_multi)
append!(dummy_alpha_single, α_single)
append!(dummy_error, error)
end
end
end
column_names = ["Name", "ZPR_multi (meV)", "ZPR_single (meV)", "α_multi", "α_single", "Error"]
df = DataFrame([dummy_name, dummy_ZPR_multi, dummy_ZPR_single, dummy_alpha_multi, dummy_alpha_single, dummy_error], column_names)
CSV.write("Data/single_multi_comparison.tsv", df, delim='\t', quotechar='"', header=true)
return df
end
# Function not in use.
function multi_mode_sorting_vw(mode = 0)
if mode == 0
files = readdir("Data/multi_mode_vw")
elseif mode == 1
files = readdir("Data/multi_mode_zero_K_vw")
end
dummy_name = []
dummy_freq = []
dummy_ZPR = []
dummy_alpha = []
dummy_ZPR_paper = []
for i in 1:length(files)
if mode == 0
data = CSV.File("Data/multi_mode_vw/" * files[i])
elseif mode == 1
data = CSV.File("Data/multi_mode_zero_K_vw/" * files[i])
end
name, freq, ZPR, alpha, ZPR_paper = general_val_multi(data)
push!(dummy_name, name)
append!(dummy_ZPR, ZPR)
append!(dummy_alpha, alpha)
append!(dummy_freq, freq)
append!(dummy_ZPR_paper, ZPR_paper)
end
column_names = ["Name", "Frequency [meV]", "ZPR [meV]", "Reference_Alpha", "Reference_ZPR [meV]"]
df_multi_mode = DataFrame([dummy_name, dummy_freq, dummy_ZPR, dummy_alpha, dummy_ZPR_paper], column_names)
if mode == 0
CSV.write("Data/multi_mode_vw.tsv", df_multi_mode, delim='\t', quotechar='"', header=true)
elseif mode == 1
CSV.write("Data/multi_mode_zero_K_vw.tsv", df_multi_mode, delim='\t', quotechar='"', header=true)
end
return df_multi_mode
end
function single_mobility(T = 300)
data = CSV.File("LiegeDataset/Results/StandardFrohlich/conduction/standard_froelich_data_conduction.csv")
dummy_name = []
dummy_mobility = []
dummy_alpha = []
for i in 1:length(data)
name, chem, eps_s, eps_o, freq, mass, res_alpha, res_paper = variable_cal(data[i])
mass = mass * mass
mat = material(eps_o, eps_s, mass, freq)
try
p = polaron(mat, T, v_guesses = 3.0001, w_guesses = 2.999 ,verbose = false)
addunits!(p)
alpha = p.α
mobility = p.μ |> u"cm^2/V/s"
name = replace(name, " " => "")
push!(dummy_name, name)
append!(dummy_alpha, alpha)
append!(dummy_mobility, mobility)
catch e
# Catch and handle the error
println("An error occurred: ", e, i, name)
end
end
column_names = ["Name", "Alpha", "Mobility (cm^2/V/s)"]
df = DataFrame([dummy_name, dummy_alpha, ustrip.(dummy_mobility)], column_names)
CSV.write("Data/single_mode_mobility_$T.tsv", df, delim='\t', quotechar='"', header=true)
return df
end