forked from PaddlePaddle/PaddleDetection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcompress.py
262 lines (221 loc) · 8.42 KB
/
compress.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import time
import multiprocessing
import numpy as np
import sys
sys.path.append("../../")
from paddle.fluid.contrib.slim import Compressor
def set_paddle_flags(**kwargs):
for key, value in kwargs.items():
if os.environ.get(key, None) is None:
os.environ[key] = str(value)
# NOTE(paddle-dev): All of these flags should be set before
# `import paddle`. Otherwise, it would not take any effect.
set_paddle_flags(
FLAGS_eager_delete_tensor_gb=0, # enable GC to save memory
)
from paddle import fluid
from ppdet.core.workspace import load_config, merge_config, create
from ppdet.data.data_feed import create_reader
from ppdet.utils.eval_utils import parse_fetches, eval_results
from ppdet.utils.cli import ArgsParser
from ppdet.utils.check import check_gpu
import ppdet.utils.checkpoint as checkpoint
from ppdet.modeling.model_input import create_feed
import logging
FORMAT = '%(asctime)s-%(levelname)s: %(message)s'
logging.basicConfig(level=logging.INFO, format=FORMAT)
logger = logging.getLogger(__name__)
def eval_run(exe, compile_program, reader, keys, values, cls, test_feed, cfg):
"""
Run evaluation program, return program outputs.
"""
iter_id = 0
results = []
if len(cls) != 0:
values = []
for i in range(len(cls)):
_, accum_map = cls[i].get_map_var()
cls[i].reset(exe)
values.append(accum_map)
images_num = 0
start_time = time.time()
has_bbox = 'bbox' in keys
for data in reader():
data = test_feed.feed(data)
feed_data = {'image': data['image'], 'im_size': data['im_size']}
outs = exe.run(compile_program,
feed=feed_data,
fetch_list=[values[0]],
return_numpy=False)
if cfg.metric == 'VOC':
outs.append(data['gt_box'])
outs.append(data['gt_label'])
outs.append(data['is_difficult'])
elif cfg.metric == 'COCO':
outs.append(data['im_info'])
outs.append(data['im_id'])
outs.append(data['im_shape'])
res = {
k: (np.array(v), v.recursive_sequence_lengths())
for k, v in zip(keys, outs)
}
results.append(res)
if iter_id % 100 == 0:
logger.info('Test iter {}'.format(iter_id))
iter_id += 1
images_num += len(res['bbox'][1][0]) if has_bbox else 1
logger.info('Test finish iter {}'.format(iter_id))
end_time = time.time()
fps = images_num / (end_time - start_time)
if has_bbox:
logger.info('Total number of images: {}, inference time: {} fps.'.
format(images_num, fps))
else:
logger.info('Total iteration: {}, inference time: {} batch/s.'.format(
images_num, fps))
return results
def main():
cfg = load_config(FLAGS.config)
if 'architecture' in cfg:
main_arch = cfg.architecture
else:
raise ValueError("'architecture' not specified in config file.")
merge_config(FLAGS.opt)
if 'log_iter' not in cfg:
cfg.log_iter = 20
# check if set use_gpu=True in paddlepaddle cpu version
check_gpu(cfg.use_gpu)
if cfg.use_gpu:
devices_num = fluid.core.get_cuda_device_count()
else:
devices_num = int(
os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
if 'train_feed' not in cfg:
train_feed = create(main_arch + 'TrainFeed')
else:
train_feed = create(cfg.train_feed)
if 'eval_feed' not in cfg:
eval_feed = create(main_arch + 'EvalFeed')
else:
eval_feed = create(cfg.eval_feed)
place = fluid.CUDAPlace(0) if cfg.use_gpu else fluid.CPUPlace()
exe = fluid.Executor(place)
lr_builder = create('LearningRate')
optim_builder = create('OptimizerBuilder')
# build program
startup_prog = fluid.Program()
train_prog = fluid.Program()
with fluid.program_guard(train_prog, startup_prog):
with fluid.unique_name.guard():
model = create(main_arch)
_, feed_vars = create_feed(train_feed, True)
train_fetches = model.train(feed_vars)
loss = train_fetches['loss']
lr = lr_builder()
optimizer = optim_builder(lr)
optimizer.minimize(loss)
train_reader = create_reader(train_feed, cfg.max_iters, FLAGS.dataset_dir)
# parse train fetches
train_keys, train_values, _ = parse_fetches(train_fetches)
train_keys.append("lr")
train_values.append(lr.name)
train_fetch_list = []
for k, v in zip(train_keys, train_values):
train_fetch_list.append((k, v))
eval_prog = fluid.Program()
with fluid.program_guard(eval_prog, startup_prog):
with fluid.unique_name.guard():
model = create(main_arch)
_, test_feed_vars = create_feed(eval_feed, True)
fetches = model.eval(test_feed_vars)
eval_prog = eval_prog.clone(True)
eval_reader = create_reader(eval_feed, args_path=FLAGS.dataset_dir)
test_data_feed = fluid.DataFeeder(test_feed_vars.values(), place)
# parse eval fetches
extra_keys = []
if cfg.metric == 'COCO':
extra_keys = ['im_info', 'im_id', 'im_shape']
if cfg.metric == 'VOC':
extra_keys = ['gt_box', 'gt_label', 'is_difficult']
eval_keys, eval_values, eval_cls = parse_fetches(fetches, eval_prog,
extra_keys)
eval_fetch_list = []
for k, v in zip(eval_keys, eval_values):
eval_fetch_list.append((k, v))
exe.run(startup_prog)
checkpoint.load_params(exe, train_prog, cfg.pretrain_weights)
best_box_ap_list = []
def eval_func(program, scope):
#place = fluid.CPUPlace()
#exe = fluid.Executor(place)
results = eval_run(exe, program, eval_reader, eval_keys, eval_values,
eval_cls, test_data_feed, cfg)
resolution = None
if 'mask' in results[0]:
resolution = model.mask_head.resolution
box_ap_stats = eval_results(results, eval_feed, cfg.metric,
cfg.num_classes, resolution, False,
FLAGS.output_eval)
if len(best_box_ap_list) == 0:
best_box_ap_list.append(box_ap_stats[0])
elif box_ap_stats[0] > best_box_ap_list[0]:
best_box_ap_list[0] = box_ap_stats[0]
logger.info("Best test box ap: {}".format(best_box_ap_list[0]))
return best_box_ap_list[0]
test_feed = [('image', test_feed_vars['image'].name),
('im_size', test_feed_vars['im_size'].name)]
com = Compressor(
place,
fluid.global_scope(),
train_prog,
train_reader=train_reader,
train_feed_list=[(key, value.name) for key, value in feed_vars.items()],
train_fetch_list=train_fetch_list,
eval_program=eval_prog,
eval_reader=eval_reader,
eval_feed_list=test_feed,
eval_func={'map': eval_func},
eval_fetch_list=[eval_fetch_list[0]],
save_eval_model=True,
prune_infer_model=[["image", "im_size"], ["multiclass_nms_0.tmp_0"]],
train_optimizer=None)
com.config(FLAGS.slim_file)
com.run()
if __name__ == '__main__':
parser = ArgsParser()
parser.add_argument(
"-s",
"--slim_file",
default=None,
type=str,
help="Config file of PaddleSlim.")
parser.add_argument(
"--output_eval",
default=None,
type=str,
help="Evaluation directory, default is current directory.")
parser.add_argument(
"-d",
"--dataset_dir",
default=None,
type=str,
help="Dataset path, same as DataFeed.dataset.dataset_dir")
FLAGS = parser.parse_args()
main()