-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathuse_case_multinomial_regression.Rmd
463 lines (388 loc) · 18.3 KB
/
use_case_multinomial_regression.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
---
title: "Multinomial logistic regression"
author:
- "Laura Vana
- [Email](mailto:[email protected])"
date: "July 6, 2020"
---
# Model
The [multinomial logistic model](https://en.wikipedia.org/wiki/Multinomial_logistic_regression)
(or multinomial logit model) is widely used in regression analysis to model unordered categorical variables.
## Likelihood
Assume we have a categorical dependent variable $y_{i} \in {1, \ldots, J}$ which can take a value out of $J$ unordered categories for each observation $i = 1,\ldots, n$. Moreover, for each observation we observe a vector of $p$ covariates $\boldsymbol x_i$ which do not depend on the category (this assumption can easily be relaxed). Let us create a binary vector $\boldsymbol {\tilde y}_i$ where $\tilde y_{ij}=1$ if $y_i=j$. The likelihood is given by:
$$
\ell(\boldsymbol\beta_1, \ldots, \boldsymbol\beta_J) = \prod_{i=1}^n\prod_{j=1}^J\left[\frac{\exp(\boldsymbol x^\top_i \boldsymbol\beta_j)}{\sum_{l=1}^J\exp(\boldsymbol x_i^\top \boldsymbol\beta_l)}\right]^{\tilde y_{ij}}
$$
and the log-likelihood is:
$$
\sum_{i=1}^n \sum_{j=1}^J \tilde y_{ij}
\log\left[\frac{\exp(\boldsymbol x^\top_i \boldsymbol\beta_j)}{\sum_{l=1}^J\exp(\boldsymbol x_i^\top \boldsymbol\beta_l)}\right]=
\sum_{i=1}^n \left(\sum_{j=1}^J \tilde y_{ij}\boldsymbol x^\top_i \boldsymbol\beta_j\right) - \mathrm{log}\sum_{l=1}^J\exp(\boldsymbol x_i^\top \boldsymbol\beta_l)
$$
For identification purposes one must set the $\boldsymbol\beta$ equal to 0 for one baseline category.
## Conic program
The second term of the log-likelihood can be modeled by conic programming. Assuming that the first category is the baseline category,
the problem of maximizing the log-likelihood can be written as:
\begin{align}
\min_{\substack{\boldsymbol\beta_l,\\ l=1,\ldots,J}}\quad &- \sum_{i=1}^n \left(\sum_{j=1}^J \tilde y_{ij}\boldsymbol x^\top_i \boldsymbol\beta_j\right) + \sum_{i=1}^n t_i\\
\text{s.t.}\quad & u^{1}_i + \ldots + u^{J}_i \leq 1, \quad \forall i=1,\ldots, n\\
& (-t_{i}, 1, u^1_{i})^\top\in\mathcal{K}_\text{expp}\\
&(x_i^\top\boldsymbol \beta_j - t_i, 1, u^j_i)^\top\in\mathcal{K}_\text{expp}, \quad \forall j = 2,\ldots,J.
\end{align}
# Estimation
In **R** several packages have built in functionality for estimating the multinomial logistic regression. Among others, the `multinom()` function from **nnet** package (Venables & Ripley, 2002),
the `vglm()` and `multinomial()` functions of the **VGAM** package (Yee, 2010) and the `mlogit()` function from the **mlogit** package (Croissant, 2020).
When implementing the function in ROI, the conic program above
must be specified by constructing the appropriate matrices.
```{r use_case_multinomial_regression_mlogit_function}
mlogit_roi <- function(X, y, solver = "auto", ...) {
stm <- simple_triplet_matrix
stzm <- simple_triplet_zero_matrix
y <- as.numeric(y)
stopifnot(is.vector(y), length(y) == nrow(X))
ymat <- model.matrix(~ as.factor(y))[, - 1]
xtilde <- model.matrix(~ 0 + ymat : X)
ytilde <- (y != min(y)) + 0 # indicator taking zero for category to be excluded
n <- nrow(X); p <- ncol(X); J <- max(y); ptilde <- ncol(xtilde)
i <- 3 * seq_len(n) - 2 ## triplets for cones
## Variables: beta_2, .., beta_J, t_i, u^1,..., u^J
op <- OP(c(- (ytilde %*% xtilde), rep.int(1, n), double(n * J)), maximum = FALSE)
Ct <- stm(i, seq_len(n), rep.int(1, n), 3 * n, n)
Cu <- stm(i + 2, seq_len(n), rep.int(-1, n), 3 * n, n)
Clist <- lapply(seq_len(J), function(j) {
Cx <- if(j == 1) stzm(3 * n, ptilde) else
stm(rep(i, p), rep((seq_len(p) - 1) * (J - 1) + j - 1, each = n),
-drop(X), 3 * n, ptilde)
CC <- cbind(Cx, Ct, stzm(3 * n, n * (j - 1)), Cu, stzm(3 * n, n * (J - j)))
})
C <- do.call("rbind", Clist)
cones <- K_expp(J * n)
rhs <- rep(c(0, 1, 0), n * J)
CL <- cbind(stzm(n, ptilde + n),
stm(rep(seq_len(n), J), seq_len(n * J), rep.int(1, n * J), n, n * J))
rhs <- rep(c(0, 1, 0), n * J)
constraints(op) <- rbind(C_constraint(C, cones, rhs),
L_constraint(CL,
dir = rep("<=", nrow(CL)),
rhs = rep(1, nrow(CL))))
bounds(op) <- V_bound(ld = -Inf, nobj = ncol(C))
ROI_solve(op, solver = solver, ...)
}
```
# Examples
## Heating data
We using the `Heating` data set from the `mlogit` package as an illustration:s
```{r use_case_multinomial_regression_data1, message=FALSE}
library("mlogit")
data("Heating", package = "mlogit")
```
We estimate the model using the function `mlogit()`, which uses the Newton-Raphson algorithm.
```{r use_case_multinomial_regression_example1_nnet}
data("Heating", package = "mlogit")
```
```{r use_case_multinomial_regression_example1_mlogit}
H <- dfidx(Heating, choice = "depvar", varying = c(3:12))
coef(mlogit(depvar ~ 0 | rooms + region | 0, data = H,
reflevel = "gc"))
```
Now using **ROI**.
```{r use_case_multinomial_regression_example1_roi}
library(ROI)
library(ROI.plugin.ecos)
library(slam)
y <- Heating$depvar
X <- model.matrix(~ rooms + region, data = Heating)
res <- mlogit_roi(X, y)
s2 <- solution(res)[1:20]
names(s2) <- apply(expand.grid(levels(y)[-1], colnames(X)), 1,
function(x) paste0(x[2], ":", x[1]))
s2
```
## Fishing data
Using the `Fishing` data set in **mlogit**, we estimate the multinomial model introduced in the first section using the function `mlogit()` from the **mlogit** package
```{r use_case_multinomial_regression_example1_mlogit}}
data("Fishing", package = "mlogit")
Fish <- dfidx(Fishing, varying = 2:9, shape = "wide", choice = "mode")
coef(mlogit(mode ~ 0 | income, data = Fish))
```
In **ROI**:
```{r use_case_multinomial_regression_example2_roi}
y <- Fishing$mode
X <- model.matrix(~ income, data = Fishing)
res2 <- mlogit_roi(X, y)
nam <- apply(expand.grid(levels(y)[-1], colnames(X)), 1,
function(x) paste0(x[2], ":", x[1]))
s1 <- solution(res2)[1:6]
names(s1) <- nam
s1
```
# Extensions
## Constraints on the coefficients
Often more parsimonious models should be employed where constraints on the $\boldsymbol\beta$'s are desired. An example of such a model is:
\begin{align*}
\eta_{ij} &= \beta_{0j} + \boldsymbol x_i^\top \boldsymbol\beta\\
P(y_i = j | \boldsymbol x_i) &= \frac{\exp(\eta_{ij})}{\sum_{l=1}^J\exp(\eta_{il})}
\end{align*}
We can introduce the **VGAM** type constraints where for each covariate a full-rank matrix of constraints $H_p$ is specified,
which in the most general case are all equal to the identity matrix. The rows of each matrix correspond to the category $j=1\ldots J$
and each column stands for a parameter to be estimated. Combining these $H_1, \ldots, H_P$ matrices into a block diagonal matrix
gives rise to the $H_\beta$ matrix of constraints.
### Estimation
We interact each column of the covariate matrix $X$ with the $n\times J$ design matrix $\tilde Y$ and obtain the model matrix:
\begin{align*}
\tilde X&= \left(\mathrm{diag}(X\cdot \boldsymbol e_1){\tilde{Y}}|\ldots|\mathrm{diag}(X\cdot\boldsymbol e_{P}){\tilde{Y}} \right)\\
\end{align*}
where $\boldsymbol e_p$ for $p=1,\ldots P$ is the orthonormal basis.
The total number of coefficients $P^*$ is equal to the number of columns of $H$: $P^*=\mathrm{ncol}(H)$. Let $\tilde H^{(j)}_\beta$ be the $(P \times P^*)$ matrix of constraints corresponding to the $j$-th category. This is obtained by taking the rows in $H_p$ that correspond to the $j$-th category.
For example, the matrix $H_\text{(Intercept)}$ for the model above is (assuming the first category is the baseline):
$$
\begin{pmatrix}
& \beta_{02} & \beta_{03}&\ldots & \beta_{0J}\\
j = 1 & 0 &0 & \ldots&0 \\
j = 2 & 1 & 0&\ldots& 0\\
j = 3 & 0 & 1&\ldots& 0\\
\vdots & \vdots & \ddots &\ldots& \vdots\\
j = J & 0&0&\ldots& 1\\
\end{pmatrix}.
$$
Note that there is no column corresponding to $\beta_{01}$, as for identifiability one of the $\beta_{0\cdot}$ parameters should be set to zero.
The matrix $H_\text{(X1)}$ for the first covariate would be:
$$
\begin{pmatrix}
& \beta_{\text{X1}}\\
j = 1 & 1 \\
j = 2 & 1 \\
j = 3 & 1\\
\vdots & \vdots\\
j = J & 1\\
\end{pmatrix}.
$$
Let $\boldsymbol{\tilde \beta}$ be the vector of coefficients to be estimated (in the example above $\boldsymbol{\tilde \beta}=(\beta_{02}, \beta_{03}, \ldots, \beta_{0J}, \beta_{\text{X1}}, \ldots)^\top$).
The problem including constraints is:
\begin{align*}
\min_{\substack{\boldsymbol\beta_l,\\ l=1,\ldots,J}}\quad &\sum_{i=1}^n \left(\sum_{j=1}^J \tilde y_{ij}\boldsymbol {\tilde x}^\top_i H_\beta \boldsymbol{\tilde\beta}\right) + \sum_{i=1}^n t_i\\
\text{s.t.}\quad & u^{1}_i + \ldots + u^{J}_i \leq 1, \quad \forall i=1,\ldots, n\\
&(x_i^\top\tilde{H}^{(j)}_\beta\tilde{\boldsymbol\beta}- t_i, 1, u^j_i)^\top\in\mathcal{K}_\text{expp}, \quad \forall j = 1,\ldots,J.
\end{align*}
```{r use_case_multinomial_regression_mlogit_hbeta_function}
mlogit_hbeta_roi <- function(X, y, Hbeta = NULL,
solver = "auto", ...) {
stm <- simple_triplet_matrix
stzm <- simple_triplet_zero_matrix
y <- as.numeric(y)
stopifnot(is.vector(y), length(y) == nrow(X))
n <- nrow(X); p <- ncol(X); J <- max(y);
if (is.null(Hbeta)) Hbeta <- diag(p * J)
if (is.list(Hbeta)) Hbeta <- Matrix::bdiag(Hbeta)
if (!is.matrix(Hbeta)) Hbeta <- as.matrix(Hbeta)
ptilde <- ncol(Hbeta)
ymat <- model.matrix(~ -1 + as.factor(y))
xtilde <- model.matrix(~ 0 + ymat : X)
H <- lapply(seq_len(J), function(j) {
Hbeta[c((seq_len(p) - 1) * J + j), ]
})
i <- 3 * seq_len(n) - 2 ## triplets for cones
op <- OP(c(- drop(colSums(xtilde %*% Hbeta)), rep.int(1, n),
double(n * J)),
maximum = FALSE)
Ct <- stm(i, seq_len(n), rep.int(1, n), 3 * n, n)
Cu <- stm(i + 2, seq_len(n), rep.int(-1, n), 3 * n, n)
Clist <- lapply(seq_len(J), function(j) {
Cx <- stm(rep(i, ptilde), rep(seq_len(ptilde), each = n),
-drop(X %*% H[[j]]), 3 * n, ptilde)
CC <- cbind(Cx, Ct, stzm(3 * n, n * (j - 1)), Cu,
stzm(3 * n, n * (J - j)))
})
C <- do.call("rbind", Clist)
cones <- K_expp(J * n)
rhs <- rep(c(0, 1, 0), n * J)
CL <- cbind(stzm(n, ptilde + n),
stm(rep(seq_len(n), J), seq_len(n * J),
rep.int(1, n * J), n, n * J))
constraints(op) <- rbind(C_constraint(C, cones, rhs),
L_constraint(CL,
dir = rep("<=", nrow(CL)),
rhs = rep(1, nrow(CL))))
bounds(op) <- V_bound(ld = -Inf, nobj = ncol(C))
ROI_solve(op, solver = solver, ...)
}
```
### Example
For comparison purposes we use the **VGAM** package to estimate a multinomial logistic model with constraints. The data set
`Fishing` is used for illustration.
We estimate the model with different intercepts for each category where $\beta_{04}=0$ with one common $\boldsymbol\beta=\boldsymbol\beta_1=\boldsymbol\beta_2=\boldsymbol\beta_3$ and $\boldsymbol\beta_4=0$.
```{r message=FALSE, use_case_multinomial_regression_example3_vglm}
library(VGAM)
pneumo <- transform(pneumo, let = log(exposure.time))
coef(vglm(mode ~ income, multinomial,
data = Fishing,
constraints = list("(Intercept)" = diag(3),
"income" = cbind(c(1, 1, 1)))))
```
Now using **ROI**.
```{r use_case_multinomial_regression_example3_roi}
y <- Fishing$mode
X <- model.matrix(~ income, data = Fishing)
J <- max(as.numeric(y))
Hbeta <- list(rbind(diag(J - 1), 0),
c(rep(1L, J - 1), 0))
Hbeta
res <- mlogit_hbeta_roi(X, y, Hbeta = Hbeta)
s1 <- solution(res)[1:4]
s1
```
## Individual and alternative specific covariates
We illustrate how a multinomial logistic model with individual and alternative-specific covariates (such as the ones introduced in **mlogit**) can be estimated using **ROI**. Consider the following model $j\in \{1,\ldots,J\}$.
\begin{align*}
\eta_{ij} &= \beta_{0j} + \boldsymbol x_i^\top \boldsymbol\beta_j + \boldsymbol z_{ij}^\top \boldsymbol\gamma_j\\
P(y_i = j | \boldsymbol x_i, \boldsymbol z_{ij}) &= \frac{\exp(\eta_{ij})}{\sum_{l=1}^J\exp(\eta_{il})}
\end{align*}
### Estimation
For identifiability, one of the intercepts and one of the $\beta$'s should be fixed to zero. The parameters of the alternative specific covariates can all be estimated.
The problem is:
\begin{align*}
\min_{\substack{\boldsymbol\beta_l,\\ l=1,\ldots,J}}\quad &\sum_{i=1}^n \left(\sum_{j=2}^J \tilde y_{ij}\boldsymbol {x}^\top_i \boldsymbol{\beta}_j + \sum_{j=1}^J \tilde y_{ij} \boldsymbol {z}_{ij}^\top \boldsymbol{\gamma}_j\right) + \sum_{i=1}^n t_i\\
\text{s.t.}\quad & u^{1}_i + \ldots + u^{J}_i \leq 1, \quad \forall i=1,\ldots, n\\
&(\boldsymbol {z}_{ij}^\top \boldsymbol{\gamma}_j - t_i, 1, u^1_i)^\top\in\mathcal{K}_\text{expp}, \\
&(x_i^\top\boldsymbol \beta_j + \boldsymbol {z}_{ij}^\top \boldsymbol{\gamma}_j - t_i, 1, u^j_i)^\top\in\mathcal{K}_\text{expp}, \quad \forall j = 2,\ldots,J.
\end{align*}.
We also include constraints on both the $\boldsymbol \beta$ and $\boldsymbol \gamma$ coefficients, similar to the setup introduced in the previous section:
\begin{align*}
\min_{\substack{\boldsymbol\beta_l,\\ l=1,\ldots,J}}\quad &\sum_{i=1}^n \left(\sum_{j=1}^J \tilde y_{ij}\boldsymbol {\tilde x}^\top_i H_\beta \boldsymbol{\tilde\beta}+ \sum_{j=1}^J \tilde y_{ij}\boldsymbol{z}^\top_{ij} H_\gamma \boldsymbol{\tilde\gamma}\right) + \sum_{i=1}^n t_i\\
\text{s.t.}\quad & u^{1}_i + \ldots + u^{J}_i \leq 1, \quad \forall i=1,\ldots, n\\
&(x_i^\top\tilde{H}^{(j)}_\beta\tilde{\boldsymbol\beta} +
z_{ij}^\top\tilde{H}^{(j)}_\gamma\tilde{\boldsymbol\gamma} - t_i, 1, u^j_i)^\top\in\mathcal{K}_\text{expp}, \quad \forall j = 1,\ldots,J.
\end{align*}
```{r}
mlogit_roi_xz <- function(X, Z, y, Hbeta = NULL, Hgamma = NULL,
solver = "auto", ...) {
stm <- simple_triplet_matrix
stzm <- simple_triplet_zero_matrix
lev <- levels(as.factor(y))
y <- as.numeric(y)
Z <- as.matrix(Z)
stopifnot(is.vector(y), length(y) == nrow(X))
varz <- unique(gsub("\\..*", "", colnames(Z)))
px <- ncol(X); pz <- length(varz)
n <- nrow(X); p <- px + pz; J <- max(y);
if (is.null(Hbeta)) Hbeta <- diag(px * J)
if (is.null(Hgamma)) Hgamma <- diag(pz * J)
if (is.list(Hbeta)) Hbeta <- Matrix::bdiag(Hbeta)
if (is.list(Hgamma)) Hgamma <- Matrix::bdiag(Hgamma)
if (!is.matrix(Hbeta)) Hbeta <- as.matrix(Hbeta)
if (!is.matrix(Hgamma)) Hgamma <- as.matrix(Hgamma)
pxtilde <- ncol(Hbeta); pztilde <- ncol(Hgamma)
ptilde <- pxtilde + pztilde
Hx <- lapply(seq_len(J), function(j) {
Hbeta[c((seq_len(px) - 1) * J + j), ]
})
Hz <- lapply(seq_len(J), function(j) {
Hgamma[c((seq_len(pz) - 1) * J + j), ]
})
ymat <- model.matrix(~ -1 + as.factor(y))
colnames(ymat) <- lev
xtilde <- model.matrix(~ 0 + ymat : X)
yZ <- c(sapply(varz, function(x)
colSums(ymat * Z[, grep(x, colnames(Z))])))
i <- 3 * seq_len(n) - 2 ## triplets for cones
op <- OP(c(- drop(colSums(xtilde %*% Hbeta)), - drop(yZ %*% Hgamma),
rep.int(1, n), double(n * J)),
maximum = FALSE)
Ct <- stm(i, seq_len(n), rep.int(1, n), 3 * n, n)
Cu <- stm(i + 2, seq_len(n), rep.int(-1, n), 3 * n, n)
Clist <- lapply(seq_len(J), function(j) {
Cx <- stm(rep(i, pxtilde), rep(seq_len(pxtilde), each = n),
-drop(X %*% Hx[[j]]), 3 * n, pxtilde)
Cz <- stm(rep(i, pztilde), rep(seq_len(pztilde), each = n),
- drop(Z[, grepl(lev[j], colnames(Z))] %*% Hz[[j]]),
3 * n, pztilde)
CC <- cbind(Cx, Cz, Ct, stzm(3 * n, n * (j - 1)), Cu, stzm(3 * n, n * (J - j)))
})
C <- do.call("rbind", Clist)
cones <- K_expp(J * n)
rhs <- rep(c(0, 1, 0), n * J)
CL <- cbind(stzm(n, ptilde + n),
stm(rep(seq_len(n), J), seq_len(n * J),
rep.int(1, n * J), n, n * J))
constraints(op) <- rbind(C_constraint(C, cones, rhs),
L_constraint(CL,
dir = rep("<=", nrow(CL)),
rhs = rep(1, nrow(CL))))
bounds(op) <- V_bound(ld = -Inf, nobj = ncol(C))
ROI_solve(op, solver = solver, ...)
}
```
### Examples
```{r}
data("Fishing", package = "mlogit")
head(Fishing)
```
We estimate the following model for the `Fishing` data:
$$
\eta_{ij} = \beta_{0j} + \text{income}_i \beta_j
+ \text{price}_{ij} \gamma_{\text{price},j}
+ \text{catch}_{ij} \gamma_{\text{catch},j}, \quad j\in\{\text{beach, pier, boat, charter}\}
$$
$$
P(\text{mode}_i = j |\cdot )= \frac{\exp(\eta_{ij})}{\sum_{l=1}^J\exp(\eta_{il})}
$$
where we fix $\beta_{0\text{beach}}=0$ and $\beta_\text{beach} = 0$.
```{r}
Fish <- dfidx(Fishing, varying = 2:9, shape = "wide", choice = "mode")
coef(mlogit(mode ~0|income|price+catch, data = Fish))
```
```{r}
y <- Fishing$mode
J <- nlevels(y)
X <- model.matrix(~ income, data = Fishing)
Z <- Fishing[, grep("price|catch", colnames(Fishing))]
head(X)
head(Z)
Hbeta <- list(
"(Intercept)" = rbind(0, diag(J - 1)),
"income" = rbind(0, diag(J - 1))
)
Hgamma <- list(
"price" = diag(J),
"catch" = diag(J)
)
res <- mlogit_roi_xz(X, Z, y, Hbeta, Hgamma)
s1 <- solution(res)[1:14]
names(s1) <- c(apply(expand.grid(levels(y)[-1], colnames(X)),1,
function(x) paste0(x[2], ":", x[1])),
colnames(Z))
s1
```
Let us have a look at the following modification:
$$
\eta_{ij} = \beta_{0j} + \text{income}_i \beta_j
+ \text{price}_{ij} \gamma_{\text{price}}
+ \text{catch}_{ij} \gamma_{\text{catch},j}, \quad j\in\{\text{beach, pier, boat, charter}\}
$$
where we fix $\beta_{0\text{beach}}=0$ and $\beta_\text{beach} = 0$.
```{r}
coef(mlogit(mode ~ price | income | catch, data = Fish))
```
```{r}
Hbeta <- list(
"(Intercept)" = rbind(0, diag(J - 1)),
"income" = rbind(0, diag(J - 1))
)
Hgamma <- list(
"price" = rep.int(1L, J),
"catch" = diag(J)
)
res <- mlogit_roi_xz(X, Z, y, Hbeta, Hgamma)
s2 <- solution(res)[1:11]
names(s2) <- c(apply(expand.grid(levels(y)[-1], colnames(X)),1,
function(x) paste0(x[2], ":", x[1])),
"price", "catch.beach", "catch.pier", "catch.boat", "catch.charter")
s2
```
# References
* Croissant, Y. (2020). mlogit: Multinomial Logit Models. R package version 1.1-0.
https://CRAN.R-project.org/package=mlogit
* Venables, W. N. & Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth Edition.
Springer, New York. ISBN 0-387-95457-0
* Yee, T. W. (2010). The VGAM Package for Categorical Data Analysis. Journal of
Statistical Software, 32(10), 1-34. URL http://www.jstatsoft.org/v32/i10/.