-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
277 lines (256 loc) · 15.9 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
from pathlib import Path
from scripts.constants import CFG_PATH, CHECKPOINT_PATH, EVALUATION_PATH
from scripts.data_handler import (get_loader, get_datapath, load_set, create_test_splits, target_mapping,
balance_dataset, save_predictions)
from scripts.embedding_dataset import EmbeddingDataset
from scripts.t1_dataset import T1Dataset
from scripts.utils import load_yaml, reconstruction_comparison_grid, init_embedding, subjects_embeddings, load_model
from lightning.pytorch.loggers import WandbLogger
from lightning.pytorch import Trainer, seed_everything
from sklearn.metrics import accuracy_score, precision_score, recall_score, mean_absolute_error
from models.embedding_classifier import EmbeddingClassifier
from models.utils import get_latent_representation
from scipy.stats import pearsonr
from tqdm import tqdm
from numpy import array, random
from pandas import DataFrame, cut
from seaborn import scatterplot, kdeplot, set_theme, color_palette
from PIL import ImageDraw, ImageFont
import matplotlib.pyplot as plt
from torch import cat, exp, device as dev, cuda
from torch.nn.functional import sigmoid
import wandb
import argparse
def predict_from_embeddings(embeddings_df, cfg_name, dataset, ukbb_size, val_size, latent_dim, age_range, bmi_range,
target_label, target_dataset, batch_size, n_layers, epochs, n_iters, save_path,
no_sync, device):
train, test = create_test_splits(embeddings_df, dataset, val_size, ukbb_size, target_dataset, n_upsampled=180)
transform_fn, output_dim, bin_centers = target_mapping(embeddings_df, target_label, age_range, bmi_range)
binary_classification = output_dim == 1
test_dataset = EmbeddingDataset(test, target=target_label, transform_fn=transform_fn)
rnd_gen = random.default_rng(seed=42)
random_seeds = [rnd_gen.integers(1, 1000) for _ in range(n_iters)]
metrics = ['Accuracy', 'Precision', 'Recall'] if binary_classification else ['MAE', 'Corr', 'p_value']
metrics.append('Predictions')
model_results = {metric: [] for metric in metrics}
baseline_results = {metric: [] for metric in metrics}
labels = []
for seed in tqdm(random_seeds, desc='Bootstrapping train'):
train_resampled = train.sample(frac=1, replace=True, random_state=seed)
train_dataset = EmbeddingDataset(train_resampled, target=target_label, transform_fn=transform_fn)
classifier = train_classifier(train_dataset, test_dataset, cfg_name, latent_dim, output_dim, n_layers,
bin_centers, batch_size, epochs, device, no_sync, seed=42)
labels = test_classifier(classifier, test_dataset, model_results, binary_classification, bin_centers, device)
add_baseline_results(labels, binary_classification, baseline_results, rnd_gen)
params = {'cfg': cfg_name, 'dataset': dataset, 'target': target_label, 'n_iters': n_iters, 'batch_size': batch_size,
'n_layers': n_layers, 'epochs': epochs}
baseline_preds = report_results(baseline_results, target_label, name='baseline')
model_preds = report_results(model_results, target_label, name=cfg_name)
baseline_savepath = save_path.parents[1] / 'baseline' / 'random'
save_predictions(test, model_preds, labels, target_label, params, save_path)
save_predictions(test, baseline_preds, labels, target_label, params, baseline_savepath)
def train_classifier(train_data, val_data, config_name, latent_dim, output_dim, n_layers, bin_centers, batch_size,
epochs, device, no_sync, seed):
if config_name == 'age':
return None
seed_everything(seed, workers=True)
wandb_logger = WandbLogger(name=f'classifier_{config_name}', project='BrainVAE', offline=no_sync)
classifier = EmbeddingClassifier(input_dim=latent_dim, output_dim=output_dim, n_layers=n_layers,
bin_centers=bin_centers)
train_dataloader = get_loader(train_data, batch_size=batch_size, shuffle=True)
val_dataloader = get_loader(val_data, batch_size=batch_size, shuffle=False)
trainer = Trainer(max_epochs=epochs,
accelerator=device,
precision='bf16-mixed',
logger=wandb_logger,
)
trainer.fit(classifier, train_dataloader, val_dataloader)
wandb.finish()
return classifier
def test_classifier(model, test_dataset, model_results, binary_classification, bin_centers, device):
device = dev('cuda' if device == 'gpu' and cuda.is_available() else 'cpu')
if model:
model.eval().to(device)
predictions, labels = [], []
for idx in tqdm(range(len(test_dataset)), desc='Evaluation'):
z, target = test_dataset[idx]
z = z.unsqueeze(dim=0).to(device)
prediction = model(z) if model else z
if binary_classification:
prediction = sigmoid(prediction).item()
else:
prediction = (exp(prediction.float().cpu().detach()) @ bin_centers).item()
predictions.append(prediction)
label = target.item() if binary_classification else (target.float().cpu() @ bin_centers).item()
labels.append(label)
compute_metrics(predictions, labels, binary_classification, model_results)
return labels
def compute_metrics(predictions, labels, binary_classification, results_dict):
if binary_classification:
predicted_classes = [1 if pred > 0.5 else 0 for pred in predictions]
acc = accuracy_score(labels, predicted_classes)
precision, recall = precision_score(labels, predicted_classes), recall_score(labels, predicted_classes)
results_dict['Accuracy'].append(acc)
results_dict['Precision'].append(precision)
results_dict['Recall'].append(recall)
else:
mae = mean_absolute_error(labels, predictions)
corr, p_value = pearsonr(predictions, labels)
results_dict['MAE'].append(mae)
results_dict['Corr'].append(corr)
results_dict['p_value'].append(p_value)
results_dict['Predictions'].append(predictions)
def report_results(results_dict, target_label, name):
model_predictions = results_dict.pop('Predictions')
results_df = DataFrame(results_dict)
mean_df = results_df.mean(axis=0).to_frame(name='Mean')
mean_df['SE'] = results_df.sem(axis=0)
print(f'Predictions for {target_label} using {name} model')
print(mean_df)
return model_predictions
def add_baseline_results(labels, binary_classification, baseline_results, rnd_gen):
random_labels = labels.copy()
if binary_classification:
positive_proportion = sum(labels) / len(labels)
random_labels = rnd_gen.binomial(1, positive_proportion, size=len(labels))
else:
rnd_gen.shuffle(random_labels)
compute_metrics(random_labels, labels, binary_classification, baseline_results)
def sample(model, dataset, age, subject_id, device, save_path):
seed_everything(42, workers=True)
save_path = save_path / 'samples'
save_path.mkdir(parents=True, exist_ok=True)
sample = dataset.get_subject(subject_id)
t1_img, _ = dataset.load_and_process_img(sample)
t1_img = t1_img.unsqueeze(dim=0).to(device)
z = get_latent_representation(t1_img, model.encoder)
if age > 0.0:
sample['age_at_scan'] = age
age = dataset.age_mapping(sample['age_at_scan']).unsqueeze(dim=0)
reconstructed = model.decoder(z, age.to(device))
axes_comparisons, _ = reconstruction_comparison_grid(t1_img, reconstructed, 1, 50, 0)
comparison = cat(axes_comparisons, dim=2)
comparison_img = wandb.Image(comparison).image
draw, font = ImageDraw.Draw(comparison_img), ImageFont.truetype("LiberationSans-Regular.ttf", 25)
draw.text((225, 183), f'Age: {int(sample["age_at_scan"])}', (255, 255, 255), font=font)
comparison_img_name = f'{subject_id}_age_{int(sample["age_at_scan"])}.png'
comparison_img.save(save_path / comparison_img_name)
plt.imshow(comparison_img)
plt.axis('off'), plt.xticks([]), plt.yticks([])
plt.show()
print(f'Reconstructed MRI saved at {save_path / comparison_img_name}')
def plot_embeddings(subjects_df, method, label, save_path, color_by=None, annotate_ids=False):
if label not in subjects_df:
raise ValueError(f'{label} not found in the dataframe')
seed_everything(42, workers=True)
save_path.mkdir(parents=True, exist_ok=True)
components = init_embedding(method).fit_transform(array(subjects_df['embedding'].to_list()))
subjects_df['emb_x'], subjects_df['emb_y'] = components[:, 0], components[:, 1]
set_theme()
fig, ax = plt.subplots(figsize=(10, 8))
if color_by:
color_by_is_float = subjects_df[color_by].dtype == 'float64'
if color_by_is_float:
subjects_df[color_by] = subjects_df[color_by].astype(int)
palette = 'viridis_r'
else:
palette = color_palette()[2:4]
scatter = scatterplot(data=subjects_df, x='emb_x', y='emb_y', hue=color_by, style=label, ax=ax, alpha=0.5,
size=.3, palette=palette)
handles_scatter, labels_scatter = scatter.get_legend_handles_labels()
kdeplot(data=subjects_df, x='emb_x', y='emb_y', hue=label, fill=False, ax=ax, alpha=0.8)
if color_by_is_float:
norm = plt.Normalize(subjects_df[color_by].min(), subjects_df[color_by].max())
sm = plt.cm.ScalarMappable(cmap='viridis_r', norm=norm)
sm.set_array([])
cbar = plt.colorbar(sm, ax=ax)
cbar.set_label(color_by)
handles_scatter, labels_scatter = handles_scatter[-2:], labels_scatter[-2:]
labels_kde = labels_scatter
else:
handles_scatter = handles_scatter[1:3] + handles_scatter[-2:]
labels_scatter = labels_scatter[1:3] + labels_scatter[-2:]
labels_kde = labels_scatter[-2:]
handles_kde = [plt.Line2D([0], [0], color=color_palette()[0]),
plt.Line2D([0], [0], color=color_palette()[1])]
ax.legend(handles_scatter + handles_kde, labels_scatter + labels_kde,
loc='lower center', ncol=2)
else:
if label == 'age_at_scan' or label == 'bmi':
subjects_df[label] = cut(subjects_df[label], bins=3)
subjects_df = subjects_df[subjects_df[label] != subjects_df[label].cat.categories[1]]
scatterplot(data=subjects_df, x='emb_x', y='emb_y', hue=label, ax=ax, alpha=0.5, size=.3)
kdeplot(data=subjects_df, x='emb_x', y='emb_y', hue=label, fill=False, ax=ax)
if annotate_ids:
for i, subject_id in enumerate(subjects_df.index):
ax.annotate(subject_id, (components[i, 0], components[i, 1]), alpha=0.6)
ax.set_title(f'Latent representations {method.upper()} embeddings')
ax.axes.xaxis.set_visible(False), ax.axes.yaxis.set_visible(False)
filename = save_path / f'latents_{method}_{label}.png'
plt.savefig(filename, dpi=150)
plt.show()
print(f'Figure saved at {filename}')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('weights', type=str, help='checkpoint file')
parser.add_argument('--ckpt_dataset', type=str, default='general',
help='dataset on which the checkpoint file was trained')
parser.add_argument('--dataset', type=str, default='general', help='dataset on which to train the predictor')
parser.add_argument('--splits_path', type=str, default='splits', help='path to the data splits')
parser.add_argument('--target', type=str, default='general', help='target dataset for predicting features')
parser.add_argument('--cfg', type=str, default='default', help='config file used for the trained model')
parser.add_argument('--device', type=str, default='gpu', help='device used for training and evaluation')
parser.add_argument('--batch_size', type=int, default=8, help='batch size used for training the age classifier')
parser.add_argument('--epochs', type=int, default=10, help='number of epochs used for training the age classifier')
parser.add_argument('--n_iters', type=int, default=100,
help='number of iterations (with different seeds) to evaluate the classifier')
parser.add_argument('--n_layers', type=int, default=3, help='number of layers in the classifier')
parser.add_argument('--sample', type=int, default=0, help='subject id from which to reconstruct MRI data')
parser.add_argument('--age', type=float, default=0.0, help='age of the subject to resample to, if using ICVAE')
parser.add_argument('--manifold', type=str, default=None,
help='Method to use for manifold learning (PCA, MDS, tSNE, Isomap)')
parser.add_argument('--label', type=str, default='age_at_scan',
help='label used for prediction and plotting latent representations'),
parser.add_argument('--color_label', type=str, default=None,
help='label used for coloring the embeddings when doing manifold learning')
parser.add_argument('--set', type=str, default='val', help='set to evaluate (val or test)')
parser.add_argument('--balance', action='store_true', help='balance the dataset by age and sex')
parser.add_argument('--ukbb_size', type=float, default=0.15,
help='size of the validation split constructed from the ukbb set to evaluate')
parser.add_argument('--val_size', type=float, default=0.3,
help='size of the validation split constructed from the set to evaluate')
parser.add_argument('--random_state', type=int, default=42, help='random state for reproducibility')
parser.add_argument('--sync', action='store_false', help='sync to wandb')
args = parser.parse_args()
config = load_yaml(Path(CFG_PATH, f'{args.cfg}.yaml'))
weights_path = Path(CHECKPOINT_PATH, args.ckpt_dataset, args.cfg, args.weights)
save_path = Path(EVALUATION_PATH, args.dataset, args.set, args.cfg) / weights_path.parent.name
save_path.mkdir(parents=True, exist_ok=True)
datapath = get_datapath(args.dataset)
if args.sample > 0:
data, age_range, bmi_range = load_set(args.dataset, args.set, args.splits_path, args.random_state)
if args.age > 0 and not age_range[0] < args.age < age_range[1]:
print(f'age {args.age} is not within the training range of {age_range[0]} and {age_range[1]}')
dataset = T1Dataset(config['input_shape'], datapath, data, config['latent_dim'], config['age_dim'],
age_range, bmi_range, testing=True)
device = dev('cuda' if args.device == 'gpu' and cuda.is_available() else 'cpu')
model = load_model(weights_path, config, device)
sample(model, dataset, args.age, args.sample, device, save_path)
else:
embeddings_df = subjects_embeddings(weights_path, args.cfg, args.dataset, config, args.set, datapath,
args.splits_path, args.random_state, save_path)
embeddings_df = embeddings_df[~embeddings_df[args.label].isna()]
if args.balance:
embeddings_df = balance_dataset(embeddings_df, args.label)
print(embeddings_df.groupby(args.label)['age_at_scan'].describe())
print(embeddings_df.groupby(args.label)['gender'].describe())
save_path = Path(EVALUATION_PATH, args.dataset + '_balanced', args.set, args.cfg) / weights_path.parent.name
save_path.mkdir(parents=True, exist_ok=True)
data, age_range, bmi_range = load_set(args.dataset, args.set, args.splits_path, args.random_state)
if not args.manifold:
predict_from_embeddings(embeddings_df, args.cfg, args.dataset, args.ukbb_size, args.val_size,
config['latent_dim'], age_range, bmi_range, args.label, args.target,
args.batch_size, args.n_layers, args.epochs, args.n_iters, save_path,
args.sync, args.device)
else:
plot_embeddings(embeddings_df, args.manifold.lower(), args.label, save_path, color_by=args.color_label)