forked from musimab/Tc_ID_Card_OCR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfind_nearest_box.py
200 lines (150 loc) · 10.1 KB
/
find_nearest_box.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
from copy import deepcopy
import cv2
import numpy as np
class NearestBox:
def __init__(self, distance_thresh, draw_line = False) -> None:
self.draw_line = draw_line
self.DISTANCE_THRESH = distance_thresh
self.target_box_cordinates = None
def getRightAndLeftCentersforAllBoxes(self, box_coordinates):
"""
it takes box coordinates that are generated from craft and matched box indexes
box_coordinates : character regions that consist of (20,4) numpy arrays
return param: right and left vertice centers of all box coordinates
"""
right_centers_box_full = np.zeros((len(box_coordinates),2))
left_centers_box_full = np.zeros((len(box_coordinates),2))
# left vertice centers for all boxes (cx, cy ) = ( x , y + h/2 )
# right vertice centers for boxes (cx, cy ) = ( x + w , y + h/2 )
for i, box in enumerate(box_coordinates):
right_centers_box_full[i] = (box[0]+ box[1], round(box[2]+box[3]/2))
left_centers_box_full[i] = (box[0], round(box[2]+ box[3]/2))
return right_centers_box_full, left_centers_box_full
def setTargetBoxCordinates(self, target_box_cord):
self.target_box_cordinates = target_box_cord
def getTargetBoxCordinates(self):
return self.target_box_cordinates
def getRightAndLeftCentersforTargetBoxes(self, box_coordinates, box_indexes):
"""
it takes box coordinates that are generated from craft and matched box indexes
box_coordinates : character regions that consist of (20,4) numpy arrays
box indexes : target 4 box indexes in tuple type
return param: right and left centers of target and all box coordinates
"""
# 4 target regions both right and left vertice centers
right_centers = np.zeros((4,2), dtype=np.int32)
left_centers = np.zeros((4,2), dtype=np.int32)
box1 = box_coordinates[box_indexes[0]]
box2 = box_coordinates[box_indexes[1]]
box3 = box_coordinates[box_indexes[2]]
box4 = box_coordinates[box_indexes[3]]
# right vertice center for box (cx, cy ) = ( x + w , y + h/2 )
right_centers[0] = (box1[0]+ box1[1], round(box1[2]+box1[3]/2))
right_centers[1] = (box2[0]+ box2[1], round(box2[2]+box2[3]/2))
right_centers[2] = (box3[0]+ box3[1], round(box3[2]+box3[3]/2))
right_centers[3] = (box4[0]+ box4[1], round(box4[2]+box4[3]/2))
# left vertice center for box (cx, cy ) = ( x , y + h/2 )
left_centers[0] = (box1[0], round(box1[2]+box1[3]/2))
left_centers[1] = (box2[0], round(box2[2]+box2[3]/2))
left_centers[2] = (box3[0], round(box3[2]+box3[3]/2))
left_centers[3] = (box4[0], round(box4[2]+box4[3]/2))
return right_centers, left_centers
def searchNearestBoundingBoxes(self, box_coordinates, box_indexes, img):
"""
Retrieves the coordinates of the boxes in the ID card image
and the indices of the corresponding regions matched with the mask image.
If there are any boxes along a certain Euclidian distance to
the right or left of the target boxes, it detects them and updates and
returns the coordinates of these boxes.
"""
right_centers_box_full, left_centers_box_full = self.getRightAndLeftCentersforAllBoxes(box_coordinates)
right_centers, left_centers = self.getRightAndLeftCentersforTargetBoxes(box_coordinates, box_indexes)
box1 = box_coordinates[box_indexes[0]]
box2 = box_coordinates[box_indexes[1]]
box3 = box_coordinates[box_indexes[2]]
box4 = box_coordinates[box_indexes[3]]
target_box_cordinates = {}
target_box_cordinates["box1"] = box1
target_box_cordinates["box2"] = box2
target_box_cordinates["box3"] = box3
target_box_cordinates["box4"] = box4
self.setTargetBoxCordinates(target_box_cordinates)
right_centers_distance1 = np.zeros((len(right_centers_box_full), 1))
right_centers_distance2 = np.zeros((len(right_centers_box_full), 1))
right_centers_distance3 = np.zeros((len(right_centers_box_full), 1))
right_centers_distance4 = np.zeros((len(right_centers_box_full), 1))
left_centers_distance1 = np.zeros((len( left_centers_box_full), 1) )
left_centers_distance2 = np.zeros((len( left_centers_box_full), 1) )
left_centers_distance3 = np.zeros((len( left_centers_box_full), 1) )
left_centers_distance4 = np.zeros((len( left_centers_box_full), 1) )
for i , left_box_centers in enumerate(left_centers_box_full):
right_centers_distance1[i] = np.linalg.norm(right_centers[0] - left_box_centers) #box1 right center - other boxes left center
right_centers_distance2[i] = np.linalg.norm(right_centers[1] - left_box_centers)
right_centers_distance3[i] = np.linalg.norm(right_centers[2] - left_box_centers)
right_centers_distance4[i] = np.linalg.norm(right_centers[3] - left_box_centers)
for i , right_box_centers in enumerate(right_centers_box_full):
left_centers_distance1[i] = np.linalg.norm(left_centers[0] - right_box_centers) # box1 left center - other boexes right center
left_centers_distance2[i] = np.linalg.norm(left_centers[1] - right_box_centers)
left_centers_distance3[i] = np.linalg.norm(left_centers[2] - right_box_centers)
left_centers_distance4[i] = np.linalg.norm(left_centers[3] - right_box_centers)
box1_r_neighbours = np.where(np.all(right_centers_distance1>0, axis=1 ) & np.all(right_centers_distance1 < [self.DISTANCE_THRESH], axis=1))
box2_r_neighbours = np.where(np.all(right_centers_distance2>0, axis=1 ) & np.all(right_centers_distance2 < [self.DISTANCE_THRESH], axis=1))
box3_r_neighbours = np.where(np.all(right_centers_distance3>0, axis=1 ) & np.all(right_centers_distance3 < [self.DISTANCE_THRESH], axis=1))
box4_r_neighbours = np.where(np.all(right_centers_distance4>0, axis=1 ) & np.all(right_centers_distance4 < [self.DISTANCE_THRESH], axis=1))
box1_l_neighbours = np.where(np.all(left_centers_distance1>0, axis=1 ) & np.all(left_centers_distance1 < [self.DISTANCE_THRESH], axis=1))
box2_l_neighbours = np.where(np.all(left_centers_distance2>0, axis=1 ) & np.all(left_centers_distance2 < [self.DISTANCE_THRESH], axis=1))
box3_l_neighbours = np.where(np.all(left_centers_distance3>0, axis=1 ) & np.all(left_centers_distance3 < [self.DISTANCE_THRESH], axis=1))
box4_l_neighbours = np.where(np.all(left_centers_distance4>0, axis=1 ) & np.all(left_centers_distance4 < [self.DISTANCE_THRESH], axis=1))
box_right_neighbours = {}
box_left_neighbours = {}
if(box1_r_neighbours[0].size):
box_right_neighbours["box1"] = (box1, box_coordinates[np.squeeze(box1_r_neighbours)])
if(box2_r_neighbours[0].size):
box_right_neighbours["box2"] = (box2, box_coordinates[np.squeeze(box2_r_neighbours)])
if(box3_r_neighbours[0].size):
box_right_neighbours["box3"] = (box3, box_coordinates[np.squeeze(box3_r_neighbours)])
if(box4_r_neighbours[0].size):
box_right_neighbours["box4"] = (box4, box_coordinates[np.squeeze(box4_r_neighbours)])
if(box1_l_neighbours[0].size):
box_left_neighbours["box1"] = (box1, box_coordinates[np.squeeze(box1_l_neighbours)])
if(box2_l_neighbours[0].size):
box_left_neighbours["box2"] = (box2, box_coordinates[np.squeeze(box2_l_neighbours)])
if(box3_l_neighbours[0].size):
box_left_neighbours["box3"] = (box3, box_coordinates[np.squeeze(box3_l_neighbours)])
if(box4_l_neighbours[0].size):
box_left_neighbours["box4"] = (box4, box_coordinates[np.squeeze(box4_l_neighbours)])
self.updateBoxCoordinates( box_right_neighbours, box_left_neighbours)
return np.asarray([target_box_cordinates["box1"], target_box_cordinates["box2"], target_box_cordinates["box3"], target_box_cordinates["box4"]])
def updateBoxCoordinates(self, box_right_neighbours, box_left_neighbours):
new_box = self.getTargetBoxCordinates()
#print("old box cordinates:", new_box)
for box_name, box_indx in box_right_neighbours.items():
new_box[box_name] = self.getExtendedBoxCoordinates(box_indx[0], box_indx[1])
for box_name, box_indx in box_left_neighbours.items():
new_box[box_name] = self.getExtendedBoxCoordinates(box_indx[0], box_indx[1])
#print("new box cordinates:", new_box)
def getExtendedBoxCoordinates(self, box, box_r_or_l):
"""
box : original box cordinate (x, w, y, h)
box_r_or_l : nearest right or left box cordinate (xn, wn, yn, hn)
return type extended box cordinate
"""
print("box_r_or_l.size:", box_r_or_l.size)
new_box = np.zeros_like(box)
if(box_r_or_l.size <= 4):
new_box[0] = box[0] if(box[0] < box_r_or_l[0]) else box_r_or_l[0]
new_box[1] = box_r_or_l[1] + box[1] + self.DISTANCE_THRESH
new_box[2] = box[2]
new_box[3] = box[3] if(box[3] > box_r_or_l[3]) else box_r_or_l[3]
else:
for bx_rl in box_r_or_l:
new_box[0] = box[0] if(box[0] < bx_rl[0]) else bx_rl[0]
new_box[1] = bx_rl[1] + box[1] + self.DISTANCE_THRESH
new_box[2] = box[2]
new_box[3] = box[3] if(box[3] > bx_rl[3]) else bx_rl[3]
return new_box
def drawlineBetweenBox(self,BoxNum, right_centers, left_centers_box_full, box2_r_neighbours, img):
start_point = int(right_centers[BoxNum][0]),int(right_centers[BoxNum][1])
box2_neighbour_indexes = np.squeeze(box2_r_neighbours)
end_point = int(left_centers_box_full[box2_neighbour_indexes][0]), int(left_centers_box_full[box2_neighbour_indexes][1])
return cv2.line(img, end_point, start_point, (0,255,0), 3)