-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathget_prediction_results.py
689 lines (559 loc) · 26.5 KB
/
get_prediction_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
# This source code is licensed under the GPL-3.0 license found in the
# LICENSE file in the root directory of this source tree.
import os
import sys
import csv
import shutil
import pickle
import lmdb
import subprocess
import torch
import argparse
import pandas as pd
import numpy as np
from rdkit import Chem
from tqdm import tqdm
from rdkit import RDLogger
from rdkit.Chem import AllChem
from rdkit.Chem.Scaffolds import MurckoScaffold
import warnings
warnings.filterwarnings(action='ignore')
from multiprocessing import Pool
import json
import os
from functools import lru_cache
from typing import List, Optional, Tuple
import regex as re
from transformers import AddedToken, PreTrainedTokenizer
import logging
from transformers import RobertaTokenizer
logger = logging.getLogger(__name__)
VOCAB_FILES_NAMES = {
"vocab_file": "vocab.json",
"merges_file": "merges.txt",
}
PRETRAINED_VOCAB_FILES_MAP = {
"vocab_file": {
"roberta-base": "https://huggingface.co/roberta-base/resolve/main/vocab.json",
"roberta-large": "https://huggingface.co/roberta-large/resolve/main/vocab.json",
"roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json",
"distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/vocab.json",
"roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json",
"roberta-large-openai-detector": "https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json",
},
"merges_file": {
"roberta-base": "https://huggingface.co/roberta-base/resolve/main/merges.txt",
"roberta-large": "https://huggingface.co/roberta-large/resolve/main/merges.txt",
"roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt",
"distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/merges.txt",
"roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt",
"roberta-large-openai-detector": "https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt",
},
}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
"roberta-base": 512,
"roberta-large": 512,
"roberta-large-mnli": 512,
"distilroberta-base": 512,
"roberta-base-openai-detector": 512,
"roberta-large-openai-detector": 512,
}
@lru_cache()
def bytes_to_unicode():
"""
Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control
characters the bpe code barfs on.
The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab
if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for
decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup
tables between utf-8 bytes and unicode strings.
"""
bs = (
list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1))
)
cs = bs[:]
n = 0
for b in range(2**8):
if b not in bs:
bs.append(b)
cs.append(2**8 + n)
n += 1
cs = [chr(n) for n in cs]
return dict(zip(bs, cs))
def get_pairs(word):
"""
Return set of symbol pairs in a word.
Word is represented as tuple of symbols (symbols being variable-length strings).
"""
pairs = set()
prev_char = word[0]
for char in word[1:]:
pairs.add((prev_char, char))
prev_char = char
return pairs
class PolymerSmilesTokenizer(PreTrainedTokenizer):
"""Adapt Roberta Tokenizer to PolymerSmilesTokenzier"""
"""
Original Comments:
Constructs a RoBERTa tokenizer, derived from the GPT-2 tokenizer, using byte-level Byte-Pair-Encoding.
This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will
be encoded differently whether it is at the beginning of the sentence (without space) or not:
```
#>>> from transformers import RobertaTokenizer
#>>> tokenizer = RobertaTokenizer.from_pretrained("roberta-base")
#>>> tokenizer("Hello world")['input_ids']
[0, 31414, 232, 328, 2]
#>>> tokenizer(" Hello world")['input_ids']
[0, 20920, 232, 2]
```
You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer or when you
call it on some text, but since the model was not pretrained this way, it might yield a decrease in performance.
<Tip>
When used with `is_split_into_words=True`, this tokenizer will add a space before each word (even the first one).
</Tip>
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
Path to the vocabulary file.
merges_file (`str`):
Path to the merges file.
errors (`str`, *optional*, defaults to `"replace"`):
Paradigm to follow when decoding bytes to UTF-8. See
[bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information.
bos_token (`str`, *optional*, defaults to `"<s>"`):
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the beginning of
sequence. The token used is the `cls_token`.
</Tip>
eos_token (`str`, *optional*, defaults to `"</s>"`):
The end of sequence token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
The token used is the `sep_token`.
</Tip>
sep_token (`str`, *optional*, defaults to `"</s>"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
cls_token (`str`, *optional*, defaults to `"<s>"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
mask_token (`str`, *optional*, defaults to `"<mask>"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
add_prefix_space (`bool`, *optional*, defaults to `False`):
Whether or not to add an initial space to the input. This allows to treat the leading word just as any
other word. (RoBERTa tokenizer detect beginning of words by the preceding space).
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
vocab_file,
merges_file,
errors="replace",
bos_token="<s>",
eos_token="</s>",
sep_token="</s>",
cls_token="<s>",
unk_token="<unk>",
pad_token="<pad>",
mask_token="<mask>",
add_prefix_space=False,
**kwargs
):
bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
sep_token = AddedToken(sep_token, lstrip=False, rstrip=False) if isinstance(sep_token, str) else sep_token
cls_token = AddedToken(cls_token, lstrip=False, rstrip=False) if isinstance(cls_token, str) else cls_token
unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token
super().__init__(
errors=errors,
bos_token=bos_token,
eos_token=eos_token,
unk_token=unk_token,
sep_token=sep_token,
cls_token=cls_token,
pad_token=pad_token,
mask_token=mask_token,
add_prefix_space=add_prefix_space,
**kwargs,
)
with open(vocab_file, encoding="utf-8") as vocab_handle:
self.encoder = json.load(vocab_handle)
self.decoder = {v: k for k, v in self.encoder.items()}
self.errors = errors # how to handle errors in decoding
self.byte_encoder = bytes_to_unicode()
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
with open(merges_file, encoding="utf-8") as merges_handle:
bpe_merges = merges_handle.read().split("\n")[1:-1]
bpe_merges = [tuple(merge.split()) for merge in bpe_merges]
self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
self.cache = {}
self.add_prefix_space = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
"""Regex for SMILES"""
smi_regex_pattern = r"(\-?[0-9]+\.?[0-9]*|\[|\]|SELF|Li|Be|Na|Mg|Al|K|Ca|Co|Zn|Ga|Ge|As|Se|Sn|Te|N|O|P|H|I|b|c|n|o|s|p|Br?|Cl?|Fe?|Ni?|Si?|\||\(|\)|\^|=|#|-|\+|\\|\/|@|\*|\.|\%|\$)"
self.pat = re.compile(smi_regex_pattern)
@property
def vocab_size(self):
return len(self.encoder)
def get_vocab(self):
return dict(self.encoder, **self.added_tokens_encoder)
def bpe(self, token):
if token in self.cache:
return self.cache[token]
word = tuple(token)
pairs = get_pairs(word)
if not pairs:
return token
while True:
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
if bigram not in self.bpe_ranks:
break
first, second = bigram
new_word = []
i = 0
while i < len(word):
try:
j = word.index(first, i)
except ValueError:
new_word.extend(word[i:])
break
else:
new_word.extend(word[i:j])
i = j
if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
new_word.append(first + second)
i += 2
else:
new_word.append(word[i])
i += 1
new_word = tuple(new_word)
word = new_word
if len(word) == 1:
break
else:
pairs = get_pairs(word)
word = " ".join(word)
self.cache[token] = word
return word
def _tokenize(self, text):
"""Tokenize a string."""
bpe_tokens = []
for token in re.findall(self.pat, text):
token = "".join(
self.byte_encoder[b] for b in token.encode("utf-8")
) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" "))
return bpe_tokens
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
return self.encoder.get(token, self.encoder.get(self.unk_token))
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
return self.decoder.get(index)
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (string) in a single string."""
text = "".join(tokens)
text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors)
return text
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
merge_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
)
with open(vocab_file, "w", encoding="utf-8") as f:
f.write(json.dumps(self.encoder, ensure_ascii=False))
index = 0
with open(merge_file, "w", encoding="utf-8") as writer:
writer.write("#version: 0.2\n")
for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
if index != token_index:
logger.warning(
f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
" Please check that the tokenizer is not corrupted!"
)
index = token_index
writer.write(" ".join(bpe_tokens) + "\n")
index += 1
return vocab_file, merge_file
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. A RoBERTa sequence has the following format:
- single sequence: `<s> X </s>`
- pair of sequences: `<s> A </s></s> B </s>`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
if token_ids_1 is None:
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
cls = [self.cls_token_id]
sep = [self.sep_token_id]
return cls + token_ids_0 + sep + sep + token_ids_1 + sep
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
if token_ids_1 is None:
return [1] + ([0] * len(token_ids_0)) + [1]
return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. RoBERTa does not
make use of token type ids, therefore a list of zeros is returned.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of zeros.
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs):
add_prefix_space = kwargs.pop("add_prefix_space", self.add_prefix_space)
if (is_split_into_words or add_prefix_space) and (len(text) > 0 and not text[0].isspace()):
text = " " + text
return (text, kwargs)
def smi2scaffold(smi):
try:
return MurckoScaffold.MurckoScaffoldSmiles(
smiles=smi, includeChirality=True)
except:
print("failed to generate scaffold with smiles: {}".format(smi))
return smi
def smi2_2Dcoords(smi):
mol = Chem.MolFromSmiles(smi)
mol = AllChem.AddHs(mol)
AllChem.Compute2DCoords(mol)
coordinates = mol.GetConformer().GetPositions().astype(np.float32)
len(mol.GetAtoms()) == len(coordinates), "2D coordinates shape is not align with {}".format(smi)
return coordinates
def smi2_3Dcoords(smi,cnt):
mol = Chem.MolFromSmiles(smi)
mol = AllChem.AddHs(mol)
coordinate_list=[]
for seed in range(cnt):
try:
res = AllChem.EmbedMolecule(mol, randomSeed=seed) # will random generate conformer with seed equal to -1. else fixed random seed.
if res == 0:
try:
AllChem.MMFFOptimizeMolecule(mol) # some conformer can not use MMFF optimize
coordinates = mol.GetConformer().GetPositions()
except:
print("Failed to generate 3D, replace with 2D")
coordinates = smi2_2Dcoords(smi)
elif res == -1:
mol_tmp = Chem.MolFromSmiles(smi)
AllChem.EmbedMolecule(mol_tmp, maxAttempts=5000, randomSeed=seed)
mol_tmp = AllChem.AddHs(mol_tmp, addCoords=True)
try:
AllChem.MMFFOptimizeMolecule(mol_tmp) # some conformer can not use MMFF optimize
coordinates = mol_tmp.GetConformer().GetPositions()
except:
print("Failed to generate 3D, replace with 2D")
coordinates = smi2_2Dcoords(smi)
except:
print("Failed to generate 3D, replace with 2D")
coordinates = smi2_2Dcoords(smi)
assert len(mol.GetAtoms()) == len(coordinates), "3D coordinates shape is not align with {}".format(smi)
coordinate_list.append(coordinates.astype(np.float32))
return coordinate_list
def inner_smi2coords(content):
smi = content
target = -999
mol = Chem.MolFromSmiles(smi)
atoms = [atom.GetSymbol() for atom in mol.GetAtoms()]
assert 'H' not in atoms
star_atoms_id = []
for idx, atom_symbol in enumerate(atoms):
if atom_symbol == '*':
star_atoms_id.append(idx)
assert len(star_atoms_id) == 2, "Error star num"
star_pair_list = []
for star_id in star_atoms_id:
star_pair_list.append(star_id)
star_atom = mol.GetAtomWithIdx(star_id)
neighbors = star_atom.GetNeighbors()
assert len(neighbors) == 1, "Error star neighbors num"
for neighbor in neighbors:
star_pair_list.append(neighbor.GetIdx())
pair_1_star = star_pair_list[0]
pair_1 = star_pair_list[3]
atom = mol.GetAtomWithIdx(pair_1_star)
atom.SetAtomicNum(mol.GetAtomWithIdx(pair_1).GetAtomicNum())
pair_2_star = star_pair_list[2]
pair_2 = star_pair_list[1]
atom = mol.GetAtomWithIdx(pair_2_star)
atom.SetAtomicNum(mol.GetAtomWithIdx(pair_2).GetAtomicNum())
smi = Chem.MolToSmiles(mol)
cnt = 10
scaffold = smi2scaffold(smi)
if len(mol.GetAtoms()) > 400:
coordinate_list = [smi2_2Dcoords(smi)] * (cnt+1)
print("atom num > 400, use 2D coords",smi)
else:
coordinate_list = smi2_3Dcoords(smi, cnt)
coordinate_list.append(smi2_2Dcoords(smi).astype(np.float32))
mol = Chem.MolFromSmiles(smi)
mol = AllChem.AddHs(mol)
atoms = [atom.GetSymbol() for atom in mol.GetAtoms()]
origin_smi = content
origin_mol = Chem.MolFromSmiles(origin_smi)
origin_atoms = [atom.GetSymbol() for atom in origin_mol.GetAtoms()]
assert origin_atoms[pair_1_star] == '*'
assert origin_atoms[pair_2_star] == '*'
atoms[pair_1_star] = '*'
atoms[pair_2_star] = '*'
return {'atoms': atoms,
'coordinates': coordinate_list,
'mol':mol, 'smi': content, 'origin_smi': content, 'star_pair': star_pair_list, 'scaffold': scaffold, 'target': target}
def smi2coords(content):
try:
return inner_smi2coords(content)
except:
print("failed psmiles: {}".format(content))
return None
if __name__ == "__main__":
os.environ['MKL_THREADING_LAYER'] = 'GNU'
parser = argparse.ArgumentParser()
parser.add_argument("--input_data", help="PSMILES or CSV file")
parser.add_argument("--property", help="which property to predict", default='all')
parser.add_argument('--outputs_path', default='outputs')
parser.add_argument('--cache_path', default='cache')
args = parser.parse_args()
if os.path.exists(args.outputs_path):
shutil.rmtree(args.outputs_path)
os.mkdir(args.outputs_path)
if os.path.exists(args.cache_path):
shutil.rmtree(args.cache_path)
os.mkdir(args.cache_path)
# data pre
content_list = []
if args.input_data.endswith('.csv'):
with open(args.input_data, newline='', encoding='utf-8') as csvfile:
csvreader = csv.reader(csvfile)
headers = next(csvreader)
for row in csvreader:
psmi = row[0]
content_list.append(psmi)
else:
psmi = args.input_data
content_list.append(psmi)
outputfilename = os.path.join(args.cache_path, 'test.lmdb')
env = lmdb.open(
outputfilename,
subdir=False,
readonly=False,
lock=False,
readahead=False,
meminit=False,
max_readers=1,
map_size=int(1000e9),
)
txn = env.begin(write=True)
index = 0
tokenizer = PolymerSmilesTokenizer.from_pretrained("./MMPolymer/models/roberta-base", max_len=411)
for content in tqdm(content_list):
data_info = smi2coords(content)
if data_info == None:
continue
encoding = tokenizer(
str(data_info['origin_smi']),
add_special_tokens=True,
max_length=411,
return_token_type_ids=False,
padding="max_length",
truncation=True,
return_attention_mask=True,
return_tensors='pt',
)
data_info["input_ids"] = encoding["input_ids"].flatten()
data_info["attention_mask"] = encoding["attention_mask"].flatten()
assert data_info["input_ids"].shape[0] == 411
assert data_info["attention_mask"].shape[0] == 411
txn.put(f'{index}'.encode("ascii"), pickle.dumps(data_info, protocol=-1))
index += 1
txn.commit()
env.close()
# model run
if args.property != 'all':
property_list = [args.property]
else:
property_list = ['Egc', 'Egb', 'Eea', 'Ei', 'Xc', 'EPS', 'Nc', 'Eat']
total_psmi_list = []
total_pred_list = []
for property_name in property_list:
weight_path = f'./ckpt/${property_name}/checkpoint_best.pt'
cmd1 = f"python ./MMPolymer/infer.py --user-dir ./MMPolymer ./ --task-name {args.cache_path} --valid-subset test --results-path {args.cache_path} --num-workers 1 --ddp-backend=c10d --batch-size 128 --task MMPolymer_finetune --loss MMPolymer_finetune --arch MMPolymer_base --classification-head-name {args.cache_path} --num-classes 1 --dict-name dict.txt --conf-size 11 --only-polar 0 --path {weight_path} --fp16 --fp16-init-scale 4 --fp16-scale-window 256 --log-interval 50 --log-format simple"
process1 = subprocess.Popen(cmd1, shell=True)
process1.wait()
predict_result_path = f'./cache/{property_name}_test_cpu.out.pkl'
predict_outputs = pd.read_pickle(predict_result_path)
pred_list = []
psmi_list = []
for epoch in range(len(predict_outputs)):
predict_output = predict_outputs[epoch]
pred_list.append(predict_output['predict'])
psmi_list.extend(predict_output['smi_name'])
pred_list = torch.cat(pred_list, dim=0).float()
psmi_list = psmi_list[::11]
pred_list = pred_list.view(-1, 11).numpy().mean(axis=1)
pred_list = np.round(pred_list, 2)
total_psmi_list.append(psmi_list)
total_pred_list.append(pred_list)
transposed_total_pred_list = list(map(list, zip(*total_pred_list)))
results_data = transposed_total_pred_list
result_pd = pd.DataFrame(results_data, columns=property_list)
result_pd.insert(0, 'psmile', total_psmi_list[0])
predict_result_save_path = os.path.join(args.outputs_path, "predict_result.csv")
print(f'The final prediction result is saved in {predict_result_save_path}')
result_pd.to_csv(predict_result_save_path, index=None)