-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathquick_demo.py
96 lines (77 loc) · 3.31 KB
/
quick_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import torch
import torchvision.transforms.functional as TF
import torch.nn.functional as F
from PIL import Image
import os
from skimage import img_as_ubyte
from tqdm import tqdm
from natsort import natsorted
from glob import glob
from utils.image_utils import save_img
from utils.model_utils import load_checkpoint
import argparse
from model_arch.SRMNet_SWFF import SRMNet_SWFF
from model_arch.SRMNet import SRMNet
tasks = ['Deblurring_motionblur',
'Dehaze_realworld',
'Denoise_gaussian',
'Denoise_realworld',
'Deraining_raindrop',
'Deraining_rainstreak',
'LLEnhancement',
'Retouching']
def main():
parser = argparse.ArgumentParser(description='Quick demo Image Restoration')
parser.add_argument('--input_dir', default='sample_images', type=str, help='Input images root')
parser.add_argument('--result_dir', default='sample_results', type=str, help='Results images root')
parser.add_argument('--weights_root', default='pretrained_model', type=str, help='Weights root')
parser.add_argument('--gpu', default=True, type=bool, help='Using GPU')
parser.add_argument('--task', default='Retouching', type=str, help='Restoration task (Above task list)')
args = parser.parse_args()
# Prepare testing data
inp_dir = os.path.join(args.input_dir, args.task)
files = natsorted(glob(os.path.join(inp_dir, '*.JPG')) + glob(os.path.join(inp_dir, '*.PNG')))
if len(files) == 0:
raise Exception("\nNo images in {} \nPlease enter the following tasks: \n\n{}".format(inp_dir, '\n'.join(tasks)))
out_dir = os.path.join(args.result_dir, args.task)
os.makedirs(out_dir, exist_ok=True)
# Build model
model = define_model(args)
model.eval()
if args.gpu:
model.cuda()
print('restoring images......')
mul = 16
for i, file_ in enumerate(tqdm(files)):
img = Image.open(file_).convert('RGB')
input_ = TF.to_tensor(img).unsqueeze(0).cuda()
# Pad the input if not_multiple_of 8
h, w = input_.shape[2], input_.shape[3]
H, W = ((h + mul) // mul) * mul, ((w + mul) // mul) * mul
padh = H - h if h % mul != 0 else 0
padw = W - w if w % mul != 0 else 0
input_ = F.pad(input_, (0, padw, 0, padh), 'reflect')
with torch.no_grad():
restored = model(input_)
restored = torch.clamp(restored, 0, 1)
restored = restored[:, :, :h, :w]
restored = restored.permute(0, 2, 3, 1).cpu().detach().numpy()
restored = img_as_ubyte(restored[0])
f = os.path.splitext(os.path.split(file_)[-1])[0]
save_img((os.path.join(out_dir, f + '.png')), restored)
print(f"Files saved at {out_dir}")
print('finish !')
def define_model(args):
# Enhance models
if args.task in ['LLEnhancement', 'Retouching']:
model = SRMNet(in_chn=3, wf=96, depth=4)
weight_path = os.path.join(args.weights_root, args.task + '.pth')
load_checkpoint(model, weight_path)
# Restored models
else:
model = SRMNet_SWFF(in_chn=3, wf=96, depth=4)
weight_path = os.path.join(args.weights_root, args.task + '.pth')
load_checkpoint(model, weight_path)
return model
if __name__ == '__main__':
main()