-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrainer.py
87 lines (74 loc) · 3.44 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import time
from copy import deepcopy
import tqdm
import torch
from torch import nn, optim
from torch.nn import functional as F
from cope import CoPE
from model_utils import *
from eval_utils import *
def train_one_epoch(model, optimizer, train_dl, delta_coef=1e-5, tbptt_len=20,
valid_dl=None, test_dl=None, fast_eval=True, adaptation=False, adaptation_lr=1e-4):
last_xu, last_xi = model.get_init_states()
loss_pp = 0.
loss_norm = 0.
optimizer.zero_grad()
model.train()
counter = 0
pbar = tqdm.tqdm(train_dl)
cum_loss = 0.
for i, batch in enumerate(pbar):
t, dt, adj, i2u_adj, u2i_adj, users, items = batch
step_loss, delta_norm, last_xu, last_xi, *_ = model.propagate_update_loss(adj, dt, last_xu, last_xi, i2u_adj, u2i_adj, users, items)
loss_pp += step_loss
loss_norm += delta_norm
counter += 1
if (counter % tbptt_len) == 0 or i == (len(train_dl) - 1):
total_loss = (loss_pp + loss_norm * delta_coef) / counter
total_loss.backward()
optimizer.step()
cum_loss += total_loss.item()
pbar.set_description(f"Loss={cum_loss/i:.4f}")
last_xu = last_xu.detach()
last_xi = last_xi.detach()
optimizer.zero_grad()
loss_pp = 0.
loss_norm = 0.
counter = 0
pbar.close()
if fast_eval:
rollout_evaluate_fast(model, valid_dl, test_dl, last_xu.detach(), last_xi.detach())
else:
rollout_evaluate(model, train_dl, valid_dl, test_dl)
def rollout_evaluate_fast(model, valid_dl, test_dl, train_xu, train_xi):
valid_xu, valid_xi, valid_ranks = rollout(valid_dl, model, train_xu, train_xi)
print(f"------- Valid MRR: {mrr(valid_ranks):.4f} Recall@10: {recall_at_k(valid_ranks, 10):.4f}")
_u, _i, test_ranks = rollout(test_dl, model, valid_xu, valid_xi)
print(f"======= Test MRR: {mrr(test_ranks):.4f} Recall@10: {recall_at_k(test_ranks, 10):.4f}")
def rollout_evaluate(model, train_dl, valid_dl, test_dl):
train_xu, train_xi, train_ranks = rollout(train_dl, model, *model.get_init_states())
print(f"Train MRR: {mrr(train_ranks):.4f} Recall@10: {recall_at_k(train_ranks, 10):.4f}")
valid_xu, valid_xi, valid_ranks = rollout(valid_dl, model, train_xu, train_xi)
print(f"Valid MRR: {mrr(valid_ranks):.4f} Recall@10: {recall_at_k(valid_ranks, 10):.4f}")
_u, _i, test_ranks = rollout(test_dl, model, valid_xu, valid_xi)
print(f"Test MRR: {mrr(test_ranks):.4f} Recall@10: {recall_at_k(test_ranks, 10):.4f}")
def rollout(dl, model, last_xu, last_xi):
model.eval()
ranks = []
with torch.no_grad():
for batch in tqdm.tqdm(dl, position=0):
t, dt, adj, i2u_adj, u2i_adj, users, items = batch
prop_user, prop_item, last_xu, last_xi = model.propagate_update(adj, dt, last_xu, last_xi, i2u_adj, u2i_adj)
rs = compute_rank(model, prop_user, prop_item, users, items)
ranks.extend(rs)
return last_xu, last_xi, ranks
def compute_rank(model: CoPE, xu, xi, users, items):
xu = torch.cat([xu, model.user_states], 1)
xi = torch.cat([xi, model.item_states], 1)
xu = F.embedding(users, xu)
scores = model.compute_pairwise_scores(xu, xi)
ranks = []
for line, i in zip(scores, items):
r = (line >= line[i]).sum().item()
ranks.append(r)
return ranks