-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathcut_and_drag_inference.py
489 lines (408 loc) · 20.9 KB
/
cut_and_drag_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
import rp
# from rp import *
import torch
import numpy as np
import einops
from diffusers import CogVideoXImageToVideoPipeline
from diffusers import CogVideoXVideoToVideoPipeline
from diffusers import CogVideoXPipeline
from diffusers.utils import export_to_video, load_image
from icecream import ic
from diffusers import AutoencoderKLCogVideoX, CogVideoXImageToVideoPipeline, CogVideoXTransformer3DModel
from transformers import T5EncoderModel
import rp.git.CommonSource.noise_warp as nw
pipe_ids = dict(
T2V5B="THUDM/CogVideoX-5b",
T2V2B="THUDM/CogVideoX-2b",
I2V5B="THUDM/CogVideoX-5b-I2V",
)
# From a bird's-eye view, a serene scene unfolds: a herd of deer gracefully navigates shallow, warm-hued waters, their silhouettes stark against the earthy tones. The deer, spread across the frame, cast elongated, well-defined shadows that accentuate their antlers, creating a mesmerizing play of light and dark. This aerial perspective captures the tranquil essence of the setting, emphasizing the harmonious contrast between the deer and their mirror-like reflections on the water's surface. The composition exudes a peaceful stillness, yet the subtle movement suggested by the shadows adds a dynamic layer to the natural beauty and symmetry of the moment.
base_url = 'https://huggingface.co/Eyeline-Research/Go-with-the-Flow'
lora_urls = dict(
I2V5B_final_i30000_lora_weights = base_url+'I2V5B_final_i30000_lora_weights.safetensors',
I2V5B_final_i38800_nearest_lora_weights = base_url+'I2V5B_final_i38800_nearest_lora_weights.safetensors',
I2V5B_resum_blendnorm_0degrad_i13600_DATASET_lora_weights = base_url+'I2V5B_resum_blendnorm_0degrad_i13600_DATASET_lora_weights.safetensors',
T2V2B_RDeg_i30000_lora_weights = base_url+'T2V2B_RDeg_i30000_lora_weights.safetensors',
T2V5B_blendnorm_i18000_DATASET_lora_weights = base_url+'T2V5B_blendnorm_i18000_DATASET_lora_weights.safetensors',
T2V5B_blendnorm_i25000_DATASET_nearest_lora_weights = base_url+'T2V5B_blendnorm_i25000_DATASET_nearest_lora_weights.safetensors',
)
dtype=torch.bfloat16
#https://medium.com/@ChatGLM/open-sourcing-cogvideox-a-step-towards-revolutionizing-video-generation-28fa4812699d
B, F, C, H, W = 1, 13, 16, 60, 90 # The defaults
num_frames=(F-1)*4+1 #https://miro.medium.com/v2/resize:fit:1400/format:webp/0*zxsAG1xks9pFIsoM
#Possible num_frames: 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49
assert num_frames==49
@rp.memoized #Torch never manages to unload it from memory anyway
def get_pipe(model_name, device=None, low_vram=True):
"""
model_name is like "I2V5B", "T2V2B", or "T2V5B", or a LoRA name like "T2V2B_RDeg_i30000_lora_weights"
device is automatically selected if unspecified
low_vram, if True, will make the pipeline use CPU offloading
"""
if model_name in pipe_ids:
lora_name = None
pipe_name = model_name
else:
#By convention, we have lora_paths that start with the pipe names
rp.fansi_print(f"Getting pipe name from model_name={model_name}",'cyan','bold')
lora_name = model_name
pipe_name = lora_name.split('_')[0]
is_i2v = "I2V" in pipe_name # This is a convention I'm using right now
# is_v2v = "V2V" in pipe_name # This is a convention I'm using right now
# if is_v2v:
# old_pipe_name = pipe_name
# old_lora_name = lora_name
# if pipe_name is not None: pipe_name = pipe_name.replace('V2V','T2V')
# if lora_name is not None: lora_name = lora_name.replace('V2V','T2V')
# rp.fansi_print(f"V2V: {old_pipe_name} --> {pipe_name} &&& {old_lora_name} --> {lora_name}",'white','bold italic','red')
pipe_id = pipe_ids[pipe_name]
print(f"LOADING PIPE WITH device={device} pipe_name={pipe_name} pipe_id={pipe_id} lora_name={lora_name}" )
hub_model_id = pipe_ids[pipe_name]
transformer = CogVideoXTransformer3DModel.from_pretrained(hub_model_id, subfolder="transformer", torch_dtype=torch.bfloat16)
text_encoder = T5EncoderModel.from_pretrained(hub_model_id, subfolder="text_encoder", torch_dtype=torch.bfloat16)
vae = AutoencoderKLCogVideoX.from_pretrained(hub_model_id, subfolder="vae", torch_dtype=torch.bfloat16)
PipeClass = CogVideoXImageToVideoPipeline if is_i2v else CogVideoXPipeline
pipe = PipeClass.from_pretrained(hub_model_id, torch_dtype=torch.bfloat16, vae=vae,transformer=transformer,text_encoder=text_encoder)
if lora_name is not None:
lora_folder = rp.make_directory('lora_models')
lora_url = lora_urls[lora_name]
lora_path = rp.download_url(lora_url, lora_folder, show_progress=True, skip_existing=True)
assert rp.file_exists(lora_path), (lora_name, lora_path)
print(end="\tLOADING LORA WEIGHTS...",flush=True)
pipe.load_lora_weights(lora_path)
print("DONE!")
if device is None:
device = rp.select_torch_device()
if not low_vram:
print("\tUSING PIPE DEVICE", device)
pipe = pipe.to(device)
else:
print("\tUSING PIPE DEVICE WITH CPU OFFLOADING",device)
pipe=pipe.to('cpu')
pipe.enable_sequential_cpu_offload(device=device)
# pipe.vae.enable_tiling()
# pipe.vae.enable_slicing()
# Metadata
pipe.lora_name = lora_name
pipe.pipe_name = pipe_name
pipe.is_i2v = is_i2v
# pipe.is_v2v = is_v2v
return pipe
def get_downtemp_noise(noise, noise_downtemp_interp):
assert noise_downtemp_interp in {'nearest', 'blend', 'blend_norm', 'randn'}, noise_downtemp_interp
if noise_downtemp_interp == 'nearest' : return rp.resize_list(noise, 13)
elif noise_downtemp_interp == 'blend' : return downsamp_mean(noise, 13)
elif noise_downtemp_interp == 'blend_norm' : return normalized_noises(downsamp_mean(noise, 13))
elif noise_downtemp_interp == 'randn' : return torch.randn_like(rp.resize_list(noise, 13)) #Basically no warped noise, just r
else: assert False, 'impossible'
def downsamp_mean(x, l=13):
return torch.stack([rp.mean(u) for u in rp.split_into_n_sublists(x, l)])
def normalized_noises(noises):
#Noises is in TCHW form
return torch.stack([x / x.std(1, keepdim=True) for x in noises])
@rp.memoized
def load_sample_cartridge(
sample_path: str,
degradation=0,
noise_downtemp_interp='nearest',
image=None,
prompt=None,
#SETTINGS:
num_inference_steps=30,
guidance_scale=6,
):
"""
COMPLETELY FROM SAMPLE: Generate with /root/micromamba/envs/i2sb/lib/python3.8/site-packages/rp/git/CommonSource/notebooks/CogVidSampleGenerator.ipynb
EXAMPLE PATHS:
sample_path = '/root/micromamba/envs/i2sb/lib/python3.8/site-packages/rp/git/CommonSource/notebooks/CogVidX_Saved_Train_Samples/plus_pug.pkl'
sample_path = '/root/micromamba/envs/i2sb/lib/python3.8/site-packages/rp/git/CommonSource/notebooks/CogVidX_Saved_Train_Samples/amuse_chop.pkl'
sample_path = '/root/micromamba/envs/i2sb/lib/python3.8/site-packages/rp/git/CommonSource/notebooks/CogVidX_Saved_Train_Samples/chomp_shop.pkl'
sample_path = '/root/micromamba/envs/i2sb/lib/python3.8/site-packages/rp/git/CommonSource/notebooks/CogVidX_Saved_Train_Samples/ahead_job.pkl'
sample_path = rp.random_element(glob.glob('/root/micromamba/envs/i2sb/lib/python3.8/site-packages/rp/git/CommonSource/notebooks/CogVidX_Saved_Train_Samples/*.pkl'))
"""
#These could be args in the future. I can't think of a use case yet though, so I'll keep the signature clean.
noise=None
video=None
if rp.is_a_folder(sample_path):
#Was generated using the flow pipeline
print(end="LOADING CARTRIDGE FOLDER "+sample_path+"...")
noise_file=rp.path_join(sample_path,'noises.npy')
instance_noise = np.load(noise_file)
instance_noise = torch.tensor(instance_noise)
instance_noise = einops.rearrange(instance_noise, 'F H W C -> F C H W')
video_file=rp.path_join(sample_path,'input.mp4')
instance_video = rp.load_video(video_file)
instance_video = rp.as_torch_images(instance_video)
instance_video = instance_video * 2 - 1
sample = rp.as_easydict(
instance_prompt = '', #Please have some prompt to override this! Ideally the defualt would come from a VLM
instance_noise = instance_noise,
instance_video = instance_video,
)
print("DONE!")
else:
#Was generated using the Cut-And-Drag GUI
print(end="LOADING CARTRIDGE FILE "+sample_path+"...")
sample=rp.file_to_object(sample_path)
print("DONE!")
#SAMPLE EXAMPLE:
# >>> sample=file_to_object('/root/micromamba/envs/i2sb/lib/python3.8/site-packages/rp/git/CommonSource/notebooks/CogVidX_Saved_Train_Samples/ahead_job.pkl')
# >>> list(sample)?s --> ['instance_prompt', 'instance_video', 'instance_noise']
# >>> sample.instance_prompt?s --> A group of elk, including a dominant bull, is seen grazing and moving through...
# >>> sample.instance_noise.shape?s --> torch.Size([49, 16, 60, 90])
# >>> sample.instance_video.shape?s --> torch.Size([49, 3, 480, 720]) # Range: [-1, 1]
sample_noise = sample["instance_noise" ].to(dtype)
sample_video = sample["instance_video" ].to(dtype)
sample_prompt = sample["instance_prompt"]
sample_gif_path = sample_path+'.mp4'
if not rp.file_exists(sample_gif_path):
sample_gif_path = sample_path+'.gif' #The older scripts made this. Backwards compatibility.
if not rp.file_exists(sample_gif_path):
#Create one!
#Clientside warped noise does not come with a nice GIF so we make one here and now!
sample_gif_path = sample_path+'.mp4'
rp.fansi_print("MAKING SAMPLE PREVIEW VIDEO",'light blue green','underlined')
preview_sample_video=rp.as_numpy_images(sample_video)/2+.5
preview_sample_noise=rp.as_numpy_images(sample_noise)[:,:,:,:3]/5+.5
preview_sample_noise = rp.resize_images(preview_sample_noise, size=8, interp="nearest")
preview_sample=rp.horizontally_concatenated_videos(preview_sample_video,preview_sample_noise)
rp.save_video_mp4(preview_sample,sample_gif_path,video_bitrate='max',framerate=12)
rp.fansi_print("DONE MAKING SAMPLE PREVIEW VIDEO!",'light blue green','underlined')
#prompt=sample.instance_prompt
downtemp_noise = get_downtemp_noise(
sample_noise,
noise_downtemp_interp=noise_downtemp_interp,
)
downtemp_noise = downtemp_noise[None]
downtemp_noise = nw.mix_new_noise(downtemp_noise, degradation)
assert downtemp_noise.shape == (B, F, C, H, W), (downtemp_noise.shape,(B, F, C, H, W))
if image is None : sample_image = rp.as_pil_image(rp.as_numpy_image(sample_video[0].float()/2+.5))
elif isinstance(image, str) : sample_image = rp.as_pil_image(rp.as_rgb_image(rp.load_image(image)))
else : sample_image = rp.as_pil_image(rp.as_rgb_image(image))
metadata = rp.gather_vars('sample_path degradation downtemp_noise sample_gif_path sample_video sample_noise noise_downtemp_interp')
settings = rp.gather_vars('num_inference_steps guidance_scale'+0*'v2v_strength')
if noise is None: noise = downtemp_noise
if video is None: video = sample_video
if image is None: image = sample_image
if prompt is None: prompt = sample_prompt
assert noise.shape == (B, F, C, H, W), (noise.shape,(B, F, C, H, W))
return rp.gather_vars('prompt noise image video metadata settings')
def dict_to_name(d=None, **kwargs):
"""
Used to generate MP4 file names
EXAMPLE:
>>> dict_to_name(dict(a=5,b='hello',c=None))
ans = a=5,b=hello,c=None
>>> name_to_dict(ans)
ans = {'a': '5', 'b': 'hello', 'c': 'None'}
"""
if d is None:
d = {}
d.update(kwargs)
return ",".join("=".join(map(str, [key, value])) for key, value in d.items())
# def name_to_dict(nam"
# Useful for analyzing output MP4 files
#
# EXAMPLE:
# >>> dict_to_name(dict(a=5,b='hello',c=None))
# ans = a=5,b=hello,c=None
# >>> name_to_dict(ans)
# ans = {'a': '5', 'b': 'hello', 'c': 'None'}
# """
# output=rp.as_easydict()
# for entry in name.split(','):
# key,value=entry.split('=',maxsplit=1)
# output[key]=value
# return output
#
#
def get_output_path(pipe, cartridge, subfolder:str, output_root:str):
"""
Generates a unique output path for saving a generated video.
Args:
pipe: The video generation pipeline used.
cartridge: Data used for generating the video.
subfolder (str): Subfolder for saving the video.
output_root (str): Root directory for output videos.
Returns:
String representing the unique path to save the video.
"""
time = rp.millis()
output_name = (
dict_to_name(
t=time,
pipe=pipe.pipe_name,
lora=pipe.lora_name,
steps = cartridge.settings.num_inference_steps,
# strength = cartridge.settings.v2v_strength,
degrad = cartridge.metadata.degradation,
downtemp = cartridge.metadata.noise_downtemp_interp,
samp = rp.get_file_name(rp.get_parent_folder(cartridge.metadata.sample_path), False),
)
+ ".mp4"
)
output_path = rp.get_unique_copy_path(
rp.path_join(
rp.make_directory(
rp.path_join(output_root, subfolder),
),
output_name,
),
)
rp.fansi_print(f"OUTPUT PATH: {rp.fansi_highlight_path(output_path)}", "blue", "bold")
return output_path
def run_pipe(
pipe,
cartridge,
subfolder="first_subfolder",
output_root: str = "infer_outputs",
output_mp4_path = None, #This overrides subfolder and output_root if specified
):
# output_mp4_path = output_mp4_path or get_output_path(pipe, cartridge, subfolder, output_root)
if rp.file_exists(output_mp4_path):
raise RuntimeError("{output_mp4_path} already exists! Please choose a different output file or delete that one. This script is designed not to clobber previous results.")
if pipe.is_i2v:
image = cartridge.image
if isinstance(image, str):
image = rp.load_image(image,use_cache=True)
image = rp.as_pil_image(rp.as_rgb_image(image))
# if pipe.is_v2v:
# print("Making v2v video...")
# v2v_video=cartridge.video
# v2v_video=rp.as_numpy_images(v2v_video) / 2 + .5
# v2v_video=rp.as_pil_images(v2v_video)
print("NOISE SHAPE",cartridge.noise.shape)
print("IMAGE",image)
video = pipe(
prompt=cartridge.prompt,
**(dict(image =image ) if pipe.is_i2v else {}),
# **(dict(strength=cartridge.settings.v2v_strength) if pipe.is_v2v else {}),
# **(dict(video =v2v_video ) if pipe.is_v2v else {}),
num_inference_steps=cartridge.settings.num_inference_steps,
latents=cartridge.noise,
guidance_scale=cartridge.settings.guidance_scale,
# generator=torch.Generator(device=device).manual_seed(42),
).frames[0]
export_to_video(video, output_mp4_path, fps=8)
sample_gif=rp.load_video(cartridge.metadata.sample_gif_path)
video=rp.as_numpy_images(video)
prevideo = rp.horizontally_concatenated_videos(
rp.resize_list(sample_gif, len(video)),
video,
origin='bottom right',
)
import textwrap
prevideo = rp.labeled_images(
prevideo,
position="top",
labels=cartridge.metadata.sample_path +"\n"+output_mp4_path +"\n\n" + rp.wrap_string_to_width(cartridge.prompt, 250),
size_by_lines=True,
text_color='light light light blue',
# font='G:Lexend'
)
preview_mp4_path = output_mp4_path + "_preview.mp4"
preview_gif_path = preview_mp4_path + ".gif"
print(end=f"Saving preview MP4 to preview_mp4_path = {preview_mp4_path}...")
rp.save_video_mp4(prevideo, preview_mp4_path, framerate=16, video_bitrate="max", show_progress=False)
compressed_preview_mp4_path = rp.save_video_mp4(prevideo, output_mp4_path + "_preview_compressed.mp4", framerate=16, show_progress=False)
print("done!")
print(end=f"Saving preview gif to preview_gif_path = {preview_gif_path}...")
rp.convert_to_gif_via_ffmpeg(preview_mp4_path, preview_gif_path, framerate=12,show_progress=False)
print("done!")
return rp.gather_vars('video output_mp4_path preview_mp4_path compressed_preview_mp4_path cartridge subfolder preview_mp4_path preview_gif_path')
# #prompt = "A little girl is riding a bicycle at high speed. Focused, detailed, realistic."
# prompt = "An old house by the lake with wooden plank siding and a thatched roof"
# prompt = "Soaring through deep space"
# prompt = "Swimming by the ruins of the titanic"
# prompt = "A camera flyby of a gigantic ice tower that a princess lives in, zooming in from far away from the castle into her dancing in the window"
# prompt = "A drone flyby of the grand canyon, aerial view"
# prompt = "A bunch of puppies running around a front lawn in a giant courtyard "
# #image = load_image(image=download_url_to_cache("https://media.sciencephoto.com/f0/22/69/89/f0226989-800px-wm.jpg"))
def main(
sample_path,
output_mp4_path:str,
prompt=None,
degradation=.5,
model_name='I2V5B_final_i38800_nearest_lora_weights',
low_vram=True,
device:str=None,
#BROADCASTABLE:
noise_downtemp_interp='nearest',
image=None,
num_inference_steps=30,
guidance_scale=6,
# v2v_strength=.5,#Timestep for when using Vid2Vid. Only set to not none when using a T2V model!
):
"""
Main function to run the video generation pipeline with specified parameters.
Args:
model_name (str): Name of the pipeline to use ('T2V5B', 'T2V2B', 'I2V5B', etc).
device (str or int, optional): Device to run the model on (e.g., 'cuda:0' or 0). If unspecified, the GPU with the most free VRAM will be chosen.
low_vram (bool): Set to True if you have less than 32GB of VRAM. In enables model cpu offloading, which slows down inference but needs much less vram.
sample_path (str or list, optional): Broadcastable. Path(s) to the sample `.pkl` file(s) or folders containing (noise.npy and input.mp4 files)
degradation (float or list): Broadcastable. Degradation level(s) for the noise warp (float between 0 and 1).
noise_downtemp_interp (str or list): Broadcastable. Interpolation method(s) for down-temporal noise. Options: 'nearest', 'blend', 'blend_norm'.
image (str, PIL.Image, or list, optional): Broadcastable. Image(s) to use as the initial frame(s). Can be a URL or a path to an image.
prompt (str or list, optional): Broadcastable. Text prompt(s) for video generation.
num_inference_steps (int or list): Broadcastable. Number of inference steps for the pipeline.
"""
output_root='infer_outputs', # output_root (str): Root directory where output videos will be saved.
subfolder='default_subfolder', # subfolder (str): Subfolder within output_root to save outputs.
if device is None:
device = rp.select_torch_device(reserve=True, prefer_used=True)
rp.fansi_print(f"Selected torch device: {device}")
cartridge_kwargs = rp.broadcast_kwargs(
rp.gather_vars(
"sample_path",
"degradation",
"noise_downtemp_interp",
"image",
"prompt",
"num_inference_steps",
"guidance_scale",
# "v2v_strength",
)
)
rp.fansi_print("cartridge_kwargs:", "cyan", "bold")
print(
rp.indentify(
rp.with_line_numbers(
rp.fansi_pygments(
rp.autoformat_json(cartridge_kwargs),
"json",
),
align=True,
)
),
)
# cartridges = [load_sample_cartridge(**x) for x in cartridge_kwargs]
cartridges = rp.load_files(lambda x:load_sample_cartridge(**x), cartridge_kwargs, show_progress='eta:Loading Cartridges')
pipe = get_pipe(model_name, device, low_vram=low_vram)
output=[]
for cartridge in cartridges:
pipe_out = run_pipe(
pipe=pipe,
cartridge=cartridge,
output_root=output_root,
subfolder=subfolder,
output_mp4_path=output_mp4_path,
)
output.append(
rp.as_easydict(
rp.gather(
pipe_out,
[
"output_mp4_path",
"preview_mp4_path",
"compressed_preview_mp4_path",
"preview_mp4_path",
"preview_gif_path",
],
as_dict=True,
)
)
)
return output
if __name__ == '__main__':
import fire
fire.Fire(main)