From b2955be2e992fc0d0ceef23fe3b6a52f41fef853 Mon Sep 17 00:00:00 2001
From: VsevolodX <79542055+VsevolodX@users.noreply.github.com>
Date: Thu, 2 Jan 2025 18:12:47 -0800
Subject: [PATCH 01/20] chore: add periods
---
.../defect-point-interstitial-tin-oxide.md | 40 +++++++++----------
.../defect-point-pair-gallium-nitride.md | 28 ++++++-------
.../defect-point-substitution-graphene.md | 28 ++++++-------
.../defect-surface-adatom-graphene.md | 28 ++++++-------
.../defect-surface-island-titanium-nitride.md | 34 ++++++++--------
.../grain-boundary-2d-boron-nitride.md | 30 +++++++-------
.../grain-boundary-3d-fcc-metals-copper.md | 28 ++++++-------
...ioxide-hafnium-dioxide-titanium-nitride.md | 36 ++++++++---------
.../interface-2d-2d-graphene-boron-nitride.md | 24 +++++------
9 files changed, 138 insertions(+), 138 deletions(-)
diff --git a/lang/en/docs/tutorials/materials/specific/defect-point-interstitial-tin-oxide.md b/lang/en/docs/tutorials/materials/specific/defect-point-interstitial-tin-oxide.md
index 40ac6692..9a0fabb1 100644
--- a/lang/en/docs/tutorials/materials/specific/defect-point-interstitial-tin-oxide.md
+++ b/lang/en/docs/tutorials/materials/specific/defect-point-interstitial-tin-oxide.md
@@ -5,7 +5,7 @@ render_macros: true
# Oxygen interstitial Defect(s) in SnO.
-## Introduction
+## Introduction.
This tutorial demonstrates how to create an oxygen interstitial defect in tin monoxide (SnO), following the methodology described in the literature.
@@ -19,42 +19,42 @@ We will recreate the O-interstitial defect structure shown in Fig. 4 a) using [V
![SnO O-interstitial](/images/tutorials/materials/defects/defect_point_interstitial_tin_oxide/0-figure-from-manuscript.webp "O-interstitial defect in SnO")
-## 1. Prepare Base Structure
+## 1. Prepare Base Structure.
-### 1.1. Load Base Material
+### 1.1. Load Base Material.
Navigate to [Materials Designer](../../../materials-designer/overview.md) and import the SnO material from [Standata](../../../materials-designer/header-menu/input-output/standata-import.md) using the search term "SnO".
![Original SnO](/images/tutorials/materials/defects/defect_point_interstitial_tin_oxide/2-wave-original-material.webp "SnO from Standata, 2x2x2 repetitions")
-### 1.2. Launch JupyterLite Session
+### 1.2. Launch JupyterLite Session.
Select the "Advanced > [JupyterLite Transformation](../../../materials-designer/header-menu/advanced/jupyterlite-dialog.md)" menu item to launch the JupyterLite environment.
-### 1.3. Open `create_defect.ipynb` Notebook
+### 1.3. Open `create_defect.ipynb` Notebook.
Find and open the `create_defect.ipynb` notebook. Select "SnO" input material.
We'll modify its parameters to create the Sn-vacancy O-interstitial defects according to the image above.
-### 1.4. Set Defect Parameters
+### 1.4. Set Defect Parameters.
Replace the default parameters in section 1.1 with:
```python
-# Supercell parameters
+# Supercell parameters.
SUPERCELL_MATRIX = [[2, 0, 0], [0, 2, 0], [0, 0, 2]]
-# Defect parameters
+# Defect parameters.
DEFECT_CONFIGS = [
{
"defect_type": "vacancy",
- # Coordiante will be resolved to nearest atom
+ # Coordiante will be resolved to nearest atom.
"approximate_coordinate": [0.0, 0.25, 0.525],
},
{
"defect_type": "interstitial",
- # Coordiante will be resolved to nearest Voronoi site
+ # Coordiante will be resolved to nearest Voronoi site.
"coordinate": [0.0, 0.25, 0.35],
"chemical_element": "O",
"placement_method": "voronoi_site"
@@ -77,9 +77,9 @@ Second defect:
- `chemical_element`: "O" for oxygen interstitial
- `placement_method`: "voronoi_site" to place atom at appropriate interstitial position
-## 2. Create the Defect
+## 2. Create the Defect.
-### 2.1. Run Supercell Creation
+### 2.1. Run Supercell Creation.
Run the notebook by selecting "Run" > "Run All Cells". This will:
@@ -87,25 +87,25 @@ Run the notebook by selecting "Run" > "Run All Cells". This will:
2. Create the O-interstitial at the specified position
3. Generate the final defect structure
-## 3. Analyze Results
+## 3. Analyze Results.
After creating the defect, examine the structure to verify:
![SnO with O-interstitial defect](/images/tutorials/materials/defects/defect_point_interstitial_tin_oxide/4-wave-result-material.webp "SnO with O-interstitial defect")
-### 3.1. Defect Position
+### 3.1. Defect Position.
- O interstitial should be at (0.0, 0.5, 0.5) in crystal coordinates
- Position should be in a void space between Sn-O layers
- Verify symmetry of surrounding atoms
-### 3.2. Local Structure
+### 3.2. Local Structure.
- Check distances to nearest Sn and O atoms
- Verify no unrealistic atom overlaps
- Confirm overall crystal structure is maintained
-## 4. Save Defect Structure
+## 4. Save Defect Structure.
The defect structure will be automatically passed back to Materials Designer where you can:
@@ -113,7 +113,7 @@ The defect structure will be automatically passed back to Materials Designer whe
2. Export it in various formats
3. Use it for further calculations
-## Interactive JupyterLite Notebook
+## Interactive JupyterLite Notebook.
The following embedded notebook demonstrates the complete process. Select "Run" > "Run All Cells".
@@ -126,7 +126,7 @@ The following embedded notebook demonstrates the complete process. Select "Run"
{% endwith %}
-## Parameter Fine-tuning
+## Parameter Fine-tuning.
To adjust the defect creation:
@@ -141,10 +141,10 @@ To adjust the defect creation:
- Change `SUPERCELL_MATRIX` for larger/smaller systems
- Consider periodic boundary conditions effects
-## References
+## References.
1. Togo, A., Oba, F., & Tanaka, I. (2006). First-principles calculations of native defects in tin monoxide. Physical Review B, 74(19), 195128.
-## Tags
+## Tags.
`SnO`, `defects`, `interstitial`, `voronoi`, `oxygen`, `point defects`, `Sn`, `O`
diff --git a/lang/en/docs/tutorials/materials/specific/defect-point-pair-gallium-nitride.md b/lang/en/docs/tutorials/materials/specific/defect-point-pair-gallium-nitride.md
index de09f10d..b93f0c32 100644
--- a/lang/en/docs/tutorials/materials/specific/defect-point-pair-gallium-nitride.md
+++ b/lang/en/docs/tutorials/materials/specific/defect-point-pair-gallium-nitride.md
@@ -3,9 +3,9 @@
render_macros: true
---
-# Nitrogen vacancy and Mg substitution in GaN
+# Nitrogen vacancy and Mg substitution in GaN.
-## Introduction
+## Introduction.
This tutorial demonstrates the process of creating material with nitrogen vacancies and magnesium substitution defects in GaN.
@@ -24,7 +24,7 @@ Specifically, the material from FIG. 2. c) of the manuscript:
![Point Pair Defects: Mg Substitution and Vacancy in GaN](/images/tutorials/materials/defects/defect_point_pair_gallium_nitride/0-figure-from-manuscript.webp "Point Defect Pair: Substitution, Vacancy in GaN, FIG. 2.")
-## 1. Create GaN Supercell
+## 1. Create GaN Supercell.
First, we navigate to [Materials Designer](../../../materials-designer/overview.md) and import the GaN material from the [Standata](../../../materials-designer/header-menu/input-output/standata-import.md).
@@ -34,7 +34,7 @@ We then use the [Advanced](../../../materials-designer/header-menu/advanced/supe
![Supercell Creation for GaN](/images/tutorials/materials/defects/defect_point_pair_gallium_nitride/2-advanced-supercell.webp "Supercell GaN")
-## 2. Identify Defect Sites
+## 2. Identify Defect Sites.
Next, we open the [3D editor](../../../materials-designer/3d-editor.md) to identify the crystal site positions for the defects.
@@ -44,21 +44,21 @@ Hover over the atoms to get the coordinates of the atoms to replace. Then copy/p
`[1.608, 4.642, 5.240]` for the Mg substitution defect and `[1.608, 4.642, 7.210]` for the nitrogen vacancy.
-## 3. Create Nitrogen Defects and Vacancies
+## 3. Create Nitrogen Defects and Vacancies.
For the defect creation, we will use the [JupyterLite](../../../jupyterlite/overview.md) environment with the corresponding notebook.
-### 3.1. Launch JupyterLite Session
+### 3.1. Launch JupyterLite Session.
Select the "Advanced > [JupyterLite Transformation](../../../materials-designer/header-menu/advanced/jupyterlite-dialog.md)" menu item to launch the JupyterLite environment.
![JupyterLite Dialog](/images/jupyterlite/md-advanced-jl.webp "JupyterLite Dialog")
-### 3.2. Open `create_point_defect_pair.ipynb` notebook
+### 3.2. Open `create_point_defect_pair.ipynb` notebook.
Find `create_point_defect_pair.ipynb` in the list of notebooks and click/double-click open it.
-### 3.3. Open and modify the notebook
+### 3.3. Open and modify the notebook.
Next, edit `create_point_defect_pair.ipynb` notebook to modify the parameters by adding a list of [defect configuration objects](https://github.com/Exabyte-io/made/blob/3d938b4d91a31323dca7a02acb12b646dbb26634/src/py/mat3ra/made/tools/build/defect/configuration.py#L257) containing the approximate coordinates of the atoms to replace.
@@ -86,19 +86,19 @@ Here's the visual of the updated content:
![Notebook setup](/images/tutorials/materials/defects/defect_point_pair_gallium_nitride/5-jl-setup.webp "Notebook setup")
-## 4. Run the Notebook
+## 4. Run the Notebook.
Run the notebook by clicking `Run` > `Run All` in the top menu to run cells and wait for the results to appear.
![Run All](/images/jupyterlite/run-all.webp "Run All")
-## 5. Analyze the Results
+## 5. Analyze the Results.
After running the notebook, the user will be able to visualize the structure of GaN with substitution and vacancy defects.
![Review the Results](/images/tutorials/materials/defects/defect_point_pair_gallium_nitride/6-jl-result-preview.webp "Review the Results")
-## 6. Pass the Material to Materials Designer
+## 6. Pass the Material to Materials Designer.
The user can pass the resulting material in the current Materials Designer environment and save it.
@@ -107,7 +107,7 @@ The user can pass the resulting material in the current Materials Designer envir
Or the user can [save or download](../../../materials-designer/header-menu/input-output.md) the material in Material JSON format or POSCAR format.
-## Interactive JupyterLite Notebook
+## Interactive JupyterLite Notebook.
The following JupyterLite notebook demonstrates the process of creating materials with substitution defects in GaN. Select "Run" > "Run All Cells".
@@ -119,12 +119,12 @@ The following JupyterLite notebook demonstrates the process of creating material
{% endwith %}
{% endwith %}
-## References
+## References.
1. **Giacomo Miceli, Alfredo Pasquarello**,
"Self-compensation due to point defects in Mg-doped GaN", Physical Review B, 2016.
[DOI: 10.1103/PhysRevB.93.165207](https://journals.aps.org/prb/abstract/10.1103/PhysRevB.93.165207){:target='_blank'}.
-## Tags
+## Tags.
`defects`, `defect pair`, `substitutional`, `vacancy`, `point defects`, `impurities`, `doped semiconductors`, `nitrogen`, `GaN`, `gallium nitride`
diff --git a/lang/en/docs/tutorials/materials/specific/defect-point-substitution-graphene.md b/lang/en/docs/tutorials/materials/specific/defect-point-substitution-graphene.md
index 732bb613..15b6a97e 100644
--- a/lang/en/docs/tutorials/materials/specific/defect-point-substitution-graphene.md
+++ b/lang/en/docs/tutorials/materials/specific/defect-point-substitution-graphene.md
@@ -3,9 +3,9 @@
render_macros: true
---
-# Substitutional Point Defects in Graphene
+# Substitutional Point Defects in Graphene.
-## Introduction
+## Introduction.
This tutorial demonstrates the process of creating materials with substitution defects, based on the work presented in the following manuscript, where nitrogen defects in graphene are studied.
@@ -23,7 +23,7 @@ Specifically, the material from FIG. 1. b) of the paper:
![Point Defect, Substitution, 0](/images/tutorials/materials/defects/defect_creation_point_substitution_graphene/0-figure-from-manuscript.webp "Point Defect, Substitution, FIG. 1.")
-## 1. Create Graphene Supercell
+## 1. Create Graphene Supercell.
First, we navigate to [Materials Designer](../../../materials-designer/overview.md) and import the graphene material from the [Standata](../../../materials-designer/header-menu/input-output/standata-import.md).
@@ -33,7 +33,7 @@ We then use the [Advanced](../../../materials-designer/header-menu/advanced/supe
![Supercell Creation for Graphene](/images/tutorials/materials/defects/defect_creation_point_substitution_graphene/2-advanced-supercell.webp "Supercell Graphene")
-## 2. Identify Defect Sites
+## 2. Identify Defect Sites.
Next, we open the [3D editor](../../../materials-designer/3d-editor.md) to identify the crystal site positions for the defects.
@@ -41,21 +41,21 @@ Next, we open the [3D editor](../../../materials-designer/3d-editor.md) to ident
Hover over the atoms to get the coordinates of the atoms to replace. Then copy/paste these coordinates into a text file for later use.
-## 3. Create Nitrogen Defects and Vacancies
+## 3. Create Nitrogen Defects and Vacancies.
For the defect creation, we will use the [JupyterLite](../../../jupyterlite/overview.md) environment with the corresponding notebook.
-### 3.1. Launch JupyterLite Session
+### 3.1. Launch JupyterLite Session.
Select the "Advanced > [JupyterLite Transformation](../../../materials-designer/header-menu/advanced/jupyterlite-dialog.md)" menu item to launch the JupyterLite environment.
![JupyterLite Dialog](/images/jupyterlite/md-advanced-jl.webp "JupyterLite Dialog")
-### 3.2. Open `create_point_defect.ipynb` notebook
+### 3.2. Open `create_point_defect.ipynb` notebook.
Find `create_point_defect.ipynb` in the list of notebooks and click/double-click open it.
-### 3.3. Open and modify the notebook
+### 3.3. Open and modify the notebook.
Next, edit `create_point_defect.ipynb` notebook to modify the parameters by adding a list of [defect configuration objects](https://github.com/Exabyte-io/made/blob/3d938b4d91a31323dca7a02acb12b646dbb26634/src/py/mat3ra/made/tools/build/defect/configuration.py#L32) containing the approximate coordinates of the atoms to replace.
@@ -101,19 +101,19 @@ Here's the visual of the updated content:
![Notebook setup](/images/tutorials/materials/defects/defect_creation_point_substitution_graphene/5-jl-setup.webp "Notebook setup")
-## 4. Run the Notebook
+## 4. Run the Notebook.
Run the notebook by clicking `Run` > `Run All` in the top menu to run cells and wait for the results to appear.
![Run All](/images/jupyterlite/run-all.webp "Run All")
-## 5. Analyze the Results
+## 5. Analyze the Results.
After running the notebook, the user will be able to visualize the structure of Graphene with substitution defects.
![Review the Results](/images/tutorials/materials/defects/defect_creation_point_substitution_graphene/6-jl-result-preview.webp "Review the Results")
-## 6. Pass the Material to Materials Designer
+## 6. Pass the Material to Materials Designer.
The user can pass the material with substitution defects in the current Materials Designer environment and save it.
@@ -122,7 +122,7 @@ The user can pass the material with substitution defects in the current Material
Or the user can [save or download](../../../materials-designer/header-menu/input-output.md) the material in Material JSON format or POSCAR format.
-## Interactive JupyterLite Notebook
+## Interactive JupyterLite Notebook.
The following JupyterLite notebook demonstrates the process of creating materials with substitution defects in graphene. Select "Run" > "Run All Cells".
@@ -134,11 +134,11 @@ The following JupyterLite notebook demonstrates the process of creating material
{% endwith %}
{% endwith %}
-## References
+## References.
1. Yoshitaka Fujimoto and Susumu Saito, "Formation, stabilities, and electronic properties of nitrogen defects in graphene", Physical Review B, 2011. [DOI: 10.1103/PhysRevB.84.245446](https://journals.aps.org/prb/abstract/10.1103/PhysRevB.84.245446){:target='_blank'}.
-## Tags
+## Tags.
`defects`, `graphene`, `substitutional`, `point-defects`, `nitrogen`
diff --git a/lang/en/docs/tutorials/materials/specific/defect-surface-adatom-graphene.md b/lang/en/docs/tutorials/materials/specific/defect-surface-adatom-graphene.md
index 1c63384d..88a89f63 100644
--- a/lang/en/docs/tutorials/materials/specific/defect-surface-adatom-graphene.md
+++ b/lang/en/docs/tutorials/materials/specific/defect-surface-adatom-graphene.md
@@ -3,9 +3,9 @@
render_macros: true
---
-# Adatom on Graphene Surface
+# Adatom on Graphene Surface.
-## Introduction
+## Introduction.
This tutorial demonstrates the process of creating a graphene structure with an adatom on the surface based on the work presented in the following manuscript.
@@ -20,7 +20,7 @@ The image shows the adatom on the graphene surface.
![Adatom on Graphene Surface](/images/tutorials/materials/defects/defect-surface-adatom-graphene/me_adatom_on_hollow_graphene.webp "Fig. 1. Adatom on Graphene Surface")
-## 1. Load and preview Graphene structure
+## 1. Load and preview Graphene structure.
First, we navigate to [Materials Designer](../../../materials-designer/overview.md) and import the Graphene material from the [Standata](../../../materials-designer/header-menu/input-output/standata-import.md).
@@ -28,15 +28,15 @@ First, we navigate to [Materials Designer](../../../materials-designer/overview.
Then we will use the [JupyterLite](../../../jupyterlite/overview.md) environment to create a graphene structure with an adatom on the surface.
-## 2. Add Li adatom
+## 2. Add Li adatom.
-### 2.1 Launch JupyterLite Session
+### 2.1 Launch JupyterLite Session.
Select the "Advanced > [JupyterLite Transformation](../../../materials-designer/header-menu/advanced/jupyterlite-dialog.md)" menu item to launch the JupyterLite environment.
![JupyterLite Dialog](/images/jupyterlite/md-advanced-jl.webp "JupyterLite Dialog")
-### 2.2. Open and modify the notebook
+### 2.2. Open and modify the notebook.
Next, edit `create_adatom_defect.ipynb` notebook to modify the parameters by changing values:
@@ -69,13 +69,13 @@ VACUUM = 6
SUPERCELL_MATRIX = [[4, 0, 0], [0, 4, 0], [0, 0, 1]]
```
-### 2.3. Run the notebook
+### 2.3. Run the notebook.
Run the notebook by selecting "Run > Run All Cells" from the menu.
![Run All](/images/jupyterlite/run-all.webp "Run All")
-### 2.4. Analyze the Results
+### 2.4. Analyze the Results.
After running the notebook, the Graphene structure with a Li adatom on the surface will be created.
@@ -83,7 +83,7 @@ The user will be able to visualize the created structure and download the corres
![Adatom on Graphene Surface](/images/tutorials/materials/defects/defect-surface-adatom-graphene/jl-result-preview-li.webp "Li Adatom on Graphene Surface")
-### 2.5. Pass the Material to the Materials Designer
+### 2.5. Pass the Material to the Materials Designer.
After reviewing the results, the user can pass the material to Materials Designer for further analysis.
@@ -91,9 +91,9 @@ After reviewing the results, the user can pass the material to Materials Designe
Or the user can [save or download](../../../materials-designer/header-menu/input-output.md) the material in Material JSON format or POSCAR format.
-## 3. Add other metal adatoms
+## 3. Add other metal adatoms.
-### 3.1. Repeat the steps above
+### 3.1. Repeat the steps above.
To create a Graphene structure with other metal adatoms, repeat the steps above by changing the `CHEMICAL_ELEMENT`, `APPORXIMATE_POSITION_ON_SURFACE`, and `DISTANCE_Z` parameters according to he values in the table 1 of the manuscript.
Notice, that some of the adatoms have more favorable position on top or bridge sites.
@@ -207,7 +207,7 @@ DISTANCE_Z = 2.69
![Au Adatom on Graphene Surface](/images/tutorials/materials/defects/defect-surface-adatom-graphene/jl-result-preview-au.webp "Au Adatom on Graphene Surface")
-## Interactive JupiterLite Notebook
+## Interactive JupiterLite Notebook.
The interactive JupyterLite notebook for creating Graphene structures with metal adatoms can be accessed below. To run the notebook, click on the "Run All" button.
@@ -219,10 +219,10 @@ The interactive JupyterLite notebook for creating Graphene structures with metal
{% endwith %}
{% endwith %}
-## References
+## References.
1. **Kevin T. Chan, J. B. Neaton, and Marvin L. Cohen**, "First-principles study of metal adatom adsorption on graphene" Phys. Rev. B 77, 235430, 2008 [DOI: 10.1103/PhysRevB.77.235430](https://doi.org/10.1103/PhysRevB.77.235430){:target='_blank'}.
-## Tags
+## Tags.
`adatom`, `graphene`, `metal`, `surface`, `defect`
diff --git a/lang/en/docs/tutorials/materials/specific/defect-surface-island-titanium-nitride.md b/lang/en/docs/tutorials/materials/specific/defect-surface-island-titanium-nitride.md
index 5a1d62f1..d36338af 100644
--- a/lang/en/docs/tutorials/materials/specific/defect-surface-island-titanium-nitride.md
+++ b/lang/en/docs/tutorials/materials/specific/defect-surface-island-titanium-nitride.md
@@ -3,9 +3,9 @@
render_macros: true
---
-# Island Surface Defect Formation in TiN
+# Island Surface Defect Formation in TiN.
-## Introduction
+## Introduction.
This tutorial demonstrates the process of creating material with island on the surface of TiN(001) based on the work presented in the following manuscript.
@@ -24,7 +24,7 @@ Specifically, the material from FIG. 2. a) of the paper:
![Surface Defect](/images/tutorials/materials/defects/defect-creation-surface-island-titanium-nitride/0.png "Surface Defect, Island FIG. 2. a)")
-## 1. Create and preview TiN Slab
+## 1. Create and preview TiN Slab.
First, we navigate to [Materials Designer](../../../materials-designer/overview.md) and import the graphene material from the [Standata](../../../materials-designer/header-menu/input-output/standata-import.md).
@@ -33,14 +33,14 @@ First, we navigate to [Materials Designer](../../../materials-designer/overview.
Then we will use the [JupyterLite](../../../jupyterlite/overview.md) environment to create a TiN slab.
-### 1.1. Launch JupyterLite Session
+### 1.1. Launch JupyterLite Session.
Select the "Advanced > [JupyterLite Transformation](../../../materials-designer/header-menu/advanced/jupyterlite-dialog.md)" menu item to launch the JupyterLite environment.
![JupyterLite Dialog](/images/jupyterlite/md-advanced-jl.webp "JupyterLite Dialog")
-### 1.2. Open and modify the notebook
+### 1.2. Open and modify the notebook.
Next, edit `create_slab.ipynb` notebook to modify the parameters by adding the following content to the "1.1. Set up slab parameters" cell in the notebook:
@@ -59,13 +59,13 @@ USE_CONVENTIONAL_CELL = True
TERMINATION_INDEX = 0
```
-### 1.3. Run the Notebook
+### 1.3. Run the Notebook.
Run the notebook by clicking `Run` > `Run All` in the top menu to run cells and wait for the results to appear.
![Run All](/images/jupyterlite/run-all.webp "Run All")
-### 1.4. Analyze the Results
+### 1.4. Analyze the Results.
After running the notebook, the user will be able to visualize the created TiN slab.
@@ -73,7 +73,7 @@ After running the notebook, the user will be able to visualize the created TiN s
We don't need to save the material at this point, as we will recreate the slab with island on the surface in the next notebook. This step is needed to identify the coordinates of the island vertices.
-## 2. Identifying the Island vertices coordinates
+## 2. Identifying the Island vertices coordinates.
We are creating an island defect that covers an area of 4.5x4.5 unit cells (which corresponds to 9x9 atoms). This island will be placed inside a 10x10 supercell (20x20 atoms).
To position the island correctly, we need to select coordinates that are `0.45` crystal units apart along both lattice directions (a and b), ensuring the island is centered.
@@ -95,15 +95,15 @@ The final centered coordinates of the island are: `[0.25, 0.2, 0]` and `[0.65, 0
These coordinates will be used in the next step to create the island on the surface.
-## 3. Create Island on the Surface
+## 3. Create Island on the Surface.
-### 3.1. Open `create_point_defect.ipynb` notebook
+### 3.1. Open `create_point_defect.ipynb` notebook.
Close the current notebook. `Introduction` notebook should be open by default.
Find `create_island_defect.ipynb` in the list of notebooks and double-click open it.
-### 3.2. Modify the notebook
+### 3.2. Modify the notebook.
Next, edit `create_island_defect.ipynb` notebook to modify the parameters by adding a list of [defect configuration objects](https://github.com/Exabyte-io/made/blob/3d938b4d91a31323dca7a02acb12b646dbb26634/src/py/mat3ra/made/tools/build/defect/configuration.py#L191) containing the cartesian coordinates of the island vertices.
@@ -139,19 +139,19 @@ Here's the visual of the updated content:
![Notebook setup](/images/tutorials/materials/defects/defect-creation-surface-island-titanium-nitride/island-setup.png "Notebook setup")
-## 4. Run the Notebook
+## 4. Run the Notebook.
Run the notebook by clicking `Run` > `Run All` in the top menu to run cells and wait for the results to appear.
![Run All](/images/jupyterlite/run-all.webp "Run All")
-## 5. Analyze the Results
+## 5. Analyze the Results.
After running the notebook, the user will be able to visualize the created material with the island on the surface.
![Review the Results](/images/tutorials/materials/defects/defect-creation-surface-island-titanium-nitride/original-result.png "Review the Results")
-## 6. Pass the Material to Materials Designer
+## 6. Pass the Material to Materials Designer.
The user can pass the resulting material to the current Materials Designer environment and save it.
@@ -160,7 +160,7 @@ The user can pass the resulting material to the current Materials Designer envir
Or the user can [save or download](../../../materials-designer/header-menu/input-output.md) the material in Material JSON format or POSCAR format.
-## Interactive JupyterLite Notebook
+## Interactive JupyterLite Notebook.
The following JupyterLite notebook demonstrates the process of creating material with island. Select "Run" > "Run All Cells".
@@ -172,10 +172,10 @@ The following JupyterLite notebook demonstrates the process of creating material
{% endwith %}
{% endwith %}
-## References
+## References.
1. D. G. Sangiovanni, A. B. Mei, D. Edström, L. Hultman, V. Chirita, I. Petrov, and J. E. Greene, "Effects of surface vibrations on interlayer mass transport: Ab initio molecular dynamics investigation of Ti adatom descent pathways and rates from TiN/TiN(001) islands", Physical Review B, 2018. [DOI: 10.1103/PhysRevB.97.035406](https://journals.aps.org/prb/abstract/10.1103/PhysRevB.97.035406){:target='_blank'}.
-## Tags
+## Tags.
`defects`, `island`, `surface`, `surface-defects`, `TiN`, `nitrogen`, `titanium`
diff --git a/lang/en/docs/tutorials/materials/specific/grain-boundary-2d-boron-nitride.md b/lang/en/docs/tutorials/materials/specific/grain-boundary-2d-boron-nitride.md
index 1bd80bb1..9eee444f 100644
--- a/lang/en/docs/tutorials/materials/specific/grain-boundary-2d-boron-nitride.md
+++ b/lang/en/docs/tutorials/materials/specific/grain-boundary-2d-boron-nitride.md
@@ -3,9 +3,9 @@
render_macros: true
---
-# 2D Grain Boundaries in Hexagonal Boron Nitride
+# 2D Grain Boundaries in Hexagonal Boron Nitride.
-## Introduction
+## Introduction.
This tutorial demonstrates the process of creating 2D grain boundary structures in hexagonal boron nitride (h-BN), based on the work presented in the following manuscript:
@@ -16,9 +16,9 @@ We will focus on creating h-BN grain boundary structures similar to Figure 2c fr
![h-BN Grain Boundary](/images/tutorials/materials/defects/grain_boundary_2d_boron_nitride/0-figure-from-manuscript.webp "h-BN Grain Boundary, FIG. 2c.")
-## 1. Create Initial h-BN Structure
+## 1. Create Initial h-BN Structure.
-### 1.1. Load h-BN Material
+### 1.1. Load h-BN Material.
Navigate to [Materials Designer](../../../materials-designer/overview.md) and import the h-BN material from the [Standata](../../../materials-designer/header-menu/input-output/standata-import.md).
@@ -29,11 +29,11 @@ Navigate to [Materials Designer](../../../materials-designer/overview.md) and im
![Standata h-BN Import](/images/tutorials/materials/interfaces/twisted-bilayer-boron-nitride/standata-import-bn.png "Standata h-BN Import")
-### 1.2. Launch JupyterLite Session
+### 1.2. Launch JupyterLite Session.
Select "Advanced > [JupyterLite Transformation](../../../materials-designer/header-menu/advanced/jupyterlite-dialog.md)" to open JupyterLite.
-### 1.3. Open and Configure Notebook
+### 1.3. Open and Configure Notebook.
Find and open `create_grain_boundary_film.ipynb`. Edit the grain boundary parameters in section 1.1:
@@ -66,7 +66,7 @@ EDGE_INCLUSION_TOLERANCE = 0.0 # in Angstroms
!!!note "Important Parameter"
The `DISTANCE_TOLERANCE` parameter (1.43 Å) is larger than B-N distances at the one specific spot in the boundary. This will cause certain nitrogen atoms to be removed during structure generation, which we'll need to restore later.
-## 2. Run the Notebook
+## 2. Run the Notebook.
Run the notebook by selecting "Run" > "Run All Cells".
@@ -74,11 +74,11 @@ The notebook will generate the h-BN grain boundary structure based on the parame
![Initial h-BN Structure](/images/tutorials/materials/defects/grain_boundary_2d_boron_nitride/4-wave-result-gb.webp "Initial h-BN Structure")
-## 3. Restore Missing Nitrogen Atom
+## 3. Restore Missing Nitrogen Atom.
Due to the `DISTANCE_TOLERANCE` setting, one nitrogen atom at the boundary is removed. We need to restore it:
-### 3.1. Add Missing Nitrogen
+### 3.1. Add Missing Nitrogen.
Open JupyterLite Session and find `create_point_defect.ipynb` notebook.
@@ -105,13 +105,13 @@ DEFECT_CONFIGS = [
![Notebook Setup](/images/tutorials/materials/defects/grain_boundary_2d_boron_nitride/5-jl-setup-nb-final-gb.webp "Notebook Setup")
-### 3.2. Run the Notebook
+### 3.2. Run the Notebook.
Run the notebook to add the missing nitrogen atom to the h-BN grain boundary structure.
![Final Structure Preview](/images/tutorials/materials/defects/grain_boundary_2d_boron_nitride/6-jl-result-preview-final-gb.webp "Final Structure Preview")
-## 4. Pass Final Material to Materials Designer
+## 4. Pass Final Material to Materials Designer.
The user can pass the material with substitution defects in the current Materials Designer environment and save it.
@@ -119,14 +119,14 @@ The user can pass the material with substitution defects in the current Material
Or the user can [save or download](../../../materials-designer/header-menu/input-output.md) the material in Material JSON format or POSCAR format.
-## 5. Manual Adjustment
+## 5. Manual Adjustment.
To fill the gaps between two phases edge atoms can be adjusted manually in Materials Designer 3D editor.
The resulting structure should be similar to the one shown in the manuscript.
![Adjusted Structure](/images/tutorials/materials/defects/grain_boundary_2d_boron_nitride/8-wave-result-final-gb-relaxed.webp "Adjusted Structure")
-## Interactive JupyterLite Notebook
+## Interactive JupyterLite Notebook.
The following JupyterLite notebook demonstrates the complete process. Select "Run" > "Run All Cells".
@@ -138,10 +138,10 @@ The following JupyterLite notebook demonstrates the complete process. Select "Ru
{% endwith %}
{% endwith %}
-## References
+## References.
1. Qiucheng Li, et al., "Grain Boundary Structures and Electronic Properties of Hexagonal Boron Nitride on Cu(111)", ACS Nano 2015 9 (6), 6308-6315. [DOI: 10.1021/acs.nanolett.5b01852](https://doi.org/10.1021/acs.nanolett.5b01852)
-## Tags
+## Tags.
`grain-boundary`, `h-BN`, `2D-materials`, `interface`, `twist-angle`, `atom-restoration`
diff --git a/lang/en/docs/tutorials/materials/specific/grain-boundary-3d-fcc-metals-copper.md b/lang/en/docs/tutorials/materials/specific/grain-boundary-3d-fcc-metals-copper.md
index a172b522..b7d22729 100644
--- a/lang/en/docs/tutorials/materials/specific/grain-boundary-3d-fcc-metals-copper.md
+++ b/lang/en/docs/tutorials/materials/specific/grain-boundary-3d-fcc-metals-copper.md
@@ -3,9 +3,9 @@
render_macros: true
---
-# Grain Boundaries in FCC Metals (Copper)
+# Grain Boundaries in FCC Metals (Copper).
-## Introduction
+## Introduction.
This tutorial demonstrates the process of creating grain boundary structures in FCC metals, specifically copper, based on the work presented in the following manuscript, where structural phase transformations in metallic grain boundaries are studied.
@@ -17,9 +17,9 @@ We will focus on creating copper grain boundary structures similar to Figure 1b
![Copper Grain Boundary](/images/tutorials/materials/defects/grain_boundary_fcc_metal/0-figure-from-manuscript.webp "Copper Grain Boundary, FIG. 1")
-## 1. Create Initial Copper Structure
+## 1. Create Initial Copper Structure.
-### 1.1. Load Copper Material
+### 1.1. Load Copper Material.
Navigate to [Materials Designer](../../../materials-designer/overview.md) and import the copper material from the [Standata](../../../materials-designer/header-menu/input-output/standata-import.md).
@@ -29,13 +29,13 @@ Navigate to [Materials Designer](../../../materials-designer/overview.md) and im
![Copper Material Import](/images/tutorials/materials/defects/grain_boundary_fcc_metal/1-standata-import-cu.webp "Copper Material Import")
-### 1.2. Launch JupyterLite Session
+### 1.2. Launch JupyterLite Session.
Select "Advanced > [JupyterLite Transformation](../../../materials-designer/header-menu/advanced/jupyterlite-dialog.md)" to open JupyterLite.
![JupyterLite Dialog](/images/jupyterlite/md-advanced-jl.webp "JupyterLite Dialog")
-### 1.3. Open and Configure Notebook
+### 1.3. Open and Configure Notebook.
Find and open `create_grain_boundary.ipynb`. Edit the grain boundary parameters in section 1.1 of the notebook:
@@ -79,16 +79,16 @@ These parameters will create:
![Grain Boundary Parameters](/images/tutorials/materials/defects/grain_boundary_fcc_metal/2-jl-setup-nb.webp "Grain Boundary Parameters")
-## 2. Run the Notebook
+## 2. Run the Notebook.
After setting the parameters, run the notebook by selecting "Run > Run All Cells" from the menu.
![Run All](/images/jupyterlite/run-all.webp "Run All")
-## 3. Analyze the Results
+## 3. Analyze the Results.
-### 3.1. Review the Structure
+### 3.1. Review the Structure.
After running the notebook, user can visualize the grain boundary structure:
@@ -98,7 +98,7 @@ After running the notebook, user can visualize the grain boundary structure:
![Grain Boundary Preview](/images/tutorials/materials/defects/grain_boundary_fcc_metal/3-jl-result-preview.webp "Grain Boundary Preview")
-### 3.2. Structure Details
+### 3.2. Structure Details.
The resulting structure should show:
@@ -114,7 +114,7 @@ Grain boundary from the top (XY) and side (XZ) views:
The structure has differences from the original figure in the manuscript, since grain boundary achieved by strain-matching two symmetrical surfaces with no changes to either surfaces. Discrepancies might be removed with further adjustments like shifting the phases, removing atom layers and reconstructing the interface.
-## 4. Save the Structure
+## 4. Save the Structure.
The final structure can be:
@@ -122,7 +122,7 @@ The final structure can be:
2. [Saved or downloaded](../../../materials-designer/header-menu/input-output.md) in Material JSON format
3. Exported as a POSCAR file
-## Interactive JupyterLite Notebook
+## Interactive JupyterLite Notebook.
The following JupyterLite notebook demonstrates the complete process. Select "Run" > "Run All Cells".
@@ -134,10 +134,10 @@ The following JupyterLite notebook demonstrates the complete process. Select "Ru
{% endwith %}
{% endwith %}
-## References
+## References.
1. Timofey Frolov, David L. Olmsted, Mark Asta & Yuri Mishin, "Structural phase transformations in metallic grain boundaries", Nature Communications, volume 4, Article number: 1899 (2013). [DOI: 10.1038/ncomms2919](https://www.nature.com/articles/ncomms2919)
-## Tags
+## Tags.
`grain boundary`, `interface`, `copper`, `Cu`, `FCC`, `metal`
diff --git a/lang/en/docs/tutorials/materials/specific/heterostructure-silicon-silicon-dioxide-hafnium-dioxide-titanium-nitride.md b/lang/en/docs/tutorials/materials/specific/heterostructure-silicon-silicon-dioxide-hafnium-dioxide-titanium-nitride.md
index 5c3c1e23..5c477b0d 100644
--- a/lang/en/docs/tutorials/materials/specific/heterostructure-silicon-silicon-dioxide-hafnium-dioxide-titanium-nitride.md
+++ b/lang/en/docs/tutorials/materials/specific/heterostructure-silicon-silicon-dioxide-hafnium-dioxide-titanium-nitride.md
@@ -3,9 +3,9 @@
render_macros: true
---
-# Creating High-k Metal Gate Stack: Si/SiO2/HfO2/TiN
+# Creating High-k Metal Gate Stack: Si/SiO2/HfO2/TiN.
-## Introduction
+## Introduction.
This tutorial demonstrates how to create a high-k metal gate stack heterostructure consisting of four materials: Si (substrate), SiO2 (gate oxide), HfO2 (high-k dielectric), and TiN (metal gate). The process involves:
@@ -17,7 +17,7 @@ We use the [Materials Designer](../../../materials-designer/overview.md) to crea
![High-k Metal Gate Stack](/images/tutorials/materials/heterostructures/heterostructure-silicon-silicon-dioxide-hafnium-dioxide-titanium-nitride/original-figure.webp "High-k Metal Gate Stack")
-## 1. Set Up Materials
+## 1. Set Up Materials.
First, navigate to Materials Designer and import from [Standata](../../../materials-designer/header-menu/input-output/standata-import.md) the following materials:
@@ -28,11 +28,11 @@ First, navigate to Materials Designer and import from [Standata](../../../materi
![Standata Import](/images/tutorials/materials/heterostructures/heterostructure-silicon-silicon-dioxide-hafnium-dioxide-titanium-nitride/import-standata.webp "Standata Import")
-## 2. Create HfO2 and TiN Slabs
+## 2. Create HfO2 and TiN Slabs.
Before building the stack, we need to create properly terminated slabs for HfO2 and TiN.
-### 2.1. Create HfO2 Slab
+### 2.1. Create HfO2 Slab.
More detailed instructions on slab creation can be found in the [SrTiO3 Slab](slab-strontium-titanate.md) tutorial.
@@ -55,7 +55,7 @@ Run the notebook to create the HfO2 slab and pass it to Materials Designer.
![HfO2 slab](/images/tutorials/materials/heterostructures/heterostructure-silicon-silicon-dioxide-hafnium-dioxide-titanium-nitride/wave-result-hfo2-slab-wave.webp "HfO2 slab")
-### 2.2. Create TiN Slab
+### 2.2. Create TiN Slab.
Open another instance of `create_slab_with_termination.ipynb` for TiN:
@@ -75,9 +75,9 @@ Run the notebook to create and pass the TiN slab to Materials Designer.
![TiN slab](/images/tutorials/materials/heterostructures/heterostructure-silicon-silicon-dioxide-hafnium-dioxide-titanium-nitride/wave-result-tin-slab.webp "TiN slab")
-## 3. Create Si/SiO2 Interface
+## 3. Create Si/SiO2 Interface.
-### 3.1. Launch ZSL Interface Builder
+### 3.1. Launch ZSL Interface Builder.
Open `create_interface_with_min_strain_zsl.ipynb` and configure:
@@ -110,13 +110,13 @@ We set a higher tolerances to achieve smaller cell with higher strain of the fil
![Interface Setup](/images/tutorials/materials/heterostructures/heterostructure-silicon-silicon-dioxide-hafnium-dioxide-titanium-nitride/jl-setup-notebook-si-sio2.webp "Interface Setup")
-### 3.2. Create Initial Interface
+### 3.2. Create Initial Interface.
Run the notebook to create the Si/SiO2 interface. This is the most critical interface, so we use strain matching to optimize it.
-## 4. Add HfO2 Layer
+## 4. Add HfO2 Layer.
-### 4.1. Configure Simple Interface Builder
+### 4.1. Configure Simple Interface Builder.
Open JupyterLite Session again and select the Si/SiO2 interface and HfO2 slab as input materials.
@@ -139,15 +139,15 @@ Film is the material that will be strained (scaled) to match the substrate.
![HfO2 Interface Setup](/images/tutorials/materials/heterostructures/heterostructure-silicon-silicon-dioxide-hafnium-dioxide-titanium-nitride/jl-setup-notebook-si-sio2-hfo2.webp "HfO2 Interface Setup")
-### 4.2. Add HfO2
+### 4.2. Add HfO2.
Run the notebook to add the pre-created HfO2 slab to the Si/SiO2 structure.
![Si/SiO2/HfO2](/images/tutorials/materials/heterostructures/heterostructure-silicon-silicon-dioxide-hafnium-dioxide-titanium-nitride/wave-result-si-sio2-hfo2.webp "Si/SiO2/HfO2")
-## 5. Add TiN Layer
+## 5. Add TiN Layer.
-### 5.1. Configure Final Layer Addition
+### 5.1. Configure Final Layer Addition.
Similar to steps in Section 4, we add the TiN layer to the Si/SiO2/HfO2 stack.
@@ -166,7 +166,7 @@ INTERFACE_DISTANCE = 2.5 # Angstroms
INTERFACE_VACUUM = 10.0 # Final vacuum spacing
```
-### 5.2. Complete the Stack
+### 5.2. Complete the Stack.
Run the notebook to add the TiN layer and complete the stack.
@@ -174,7 +174,7 @@ Run the notebook to add the TiN layer and complete the stack.
The user then can [save or download](../../../materials-designer/header-menu/input-output.md) the material in Material JSON format or POSCAR format.
-## Interactive JupyterLite Notebook
+## Interactive JupyterLite Notebook.
The following JupyterLite notebook demonstrates the process of creating target material. Select "Run" > "Run All Cells".
@@ -186,7 +186,7 @@ The following JupyterLite notebook demonstrates the process of creating target m
{% endwith %}
{% endwith %}
-## References
+## References.
1. [QuantumATK tutorial](https://docs.quantumatk.com/tutorials/hkmg_builder/hkmg_builder.html)
@@ -200,6 +200,6 @@ The following JupyterLite notebook demonstrates the process of creating target m
Reports on Progress in Physics 69, 327 (2006)
[DOI: 10.1088/0034-4885/69/2/R02](https://doi.org/10.1088/0034-4885/69/2/R02)
-## Tags
+## Tags.
`slab-creation`, `interfaces`, `high-k`, `metal-gate`, `semiconductor`, `heterostructure`, `strain-matching`, `Si`, `SiO2`, `HfO2`, `TiN`
diff --git a/lang/en/docs/tutorials/materials/specific/interface-2d-2d-graphene-boron-nitride.md b/lang/en/docs/tutorials/materials/specific/interface-2d-2d-graphene-boron-nitride.md
index 6d699f53..2204d60b 100644
--- a/lang/en/docs/tutorials/materials/specific/interface-2d-2d-graphene-boron-nitride.md
+++ b/lang/en/docs/tutorials/materials/specific/interface-2d-2d-graphene-boron-nitride.md
@@ -3,9 +3,9 @@
render_macros: true
---
-# Interfaces between 2D Materials: h-BN and Graphene
+# Interfaces between 2D Materials: h-BN and Graphene.
-## Introduction
+## Introduction.
This tutorial demonstrates the process of creating interfaces with different stacking configurations between 2D materials, specifically hexagonal boron nitride (h-BN) and graphene, based on the work presented in the following manuscript, where the electronic properties of h-BN-graphene interfaces are studied.
@@ -22,7 +22,7 @@ The Figure 7 shows the different stacking configurations of graphene on h-BN.
![Graphene on Hexagonal Boron Nitride](/images/tutorials/materials/interfaces/interface_2d_2d_graphene_boron_nitride/0-figure-from-manuscript.webp "Graphene on Hexagonal Boron Nitride, FIG. 7")
-## 1. Load and preview materials
+## 1. Load and preview materials.
First, we navigate to [Materials Designer](../../../materials-designer/overview.md) and import the Graphene and Hexagonal BN materials from the [Standata](../../../materials-designer/header-menu/input-output/standata-import.md).
@@ -32,16 +32,16 @@ First, we navigate to [Materials Designer](../../../materials-designer/overview.
Then we will use the [JupyterLite](../../../jupyterlite/overview.md) environment to create the target structures.
-## 2. Create interface between h-BN and Graphene
+## 2. Create interface between h-BN and Graphene.
-### 2.1 Launch JupyterLite Session
+### 2.1 Launch JupyterLite Session.
Select the "Advanced > [JupyterLite Transformation](../../../materials-designer/header-menu/advanced/jupyterlite-dialog.md)" menu item to launch the JupyterLite environment.
![JupyterLite Dialog](/images/jupyterlite/md-advanced-jl.webp "JupyterLite Dialog")
-### 2.2. Open and modify the notebook
+### 2.2. Open and modify the notebook.
Select the input materials with first one being the substrate (h-BN) and the second one being the film (Graphene).
@@ -87,13 +87,13 @@ INTERFACE_VACUUM = 20.0 # in Angstrom
![Notebook setup](/images/tutorials/materials/interfaces/interface_2d_2d_graphene_boron_nitride/2-jl-setup-notebook.webp "Notebook setup")
-### 2.3. Run the Notebook
+### 2.3. Run the Notebook.
After setting the parameters, run the notebook to create the interface between h-BN and Graphene.
![Run All](/images/jupyterlite/run-all.webp "Run All")
-### 2.4. View Results and shift the layers
+### 2.4. View Results and shift the layers.
The generation might take some time.
After that, the user can pass the material to the Materials Designer for further analysis.
@@ -127,7 +127,7 @@ Preview of interfaces with different stacking configurations is shown below.
![Shifted Interfaces](/images/tutorials/materials/interfaces/interface_2d_2d_graphene_boron_nitride/5-jl-result-preview.webp "Shifted Interfaces")
-## 3. Pass the Material to Materials Designer
+## 3. Pass the Material to Materials Designer.
The user can pass the material with the interface in the current Materials Designer environment and save it.
@@ -136,7 +136,7 @@ The user can pass the material with the interface in the current Materials Desig
Or the user can [save or download](../../../materials-designer/header-menu/input-output.md) the material in Material JSON format or POSCAR format.
-## Interactive JupyterLite Notebook
+## Interactive JupyterLite Notebook.
The interactive JupyterLite notebook for creating Gr/h-BN interface can be accessed below. To run the notebook, click on the "Run All" button.
@@ -149,7 +149,7 @@ The interactive JupyterLite notebook for creating Gr/h-BN interface can be acces
{% endwith %}
{% endwith %}
-## References
+## References.
1. **Jeil Jung, Ashley M. DaSilva, Allan H. MacDonald & Shaffique Adam**
@@ -169,6 +169,6 @@ The interactive JupyterLite notebook for creating Gr/h-BN interface can be acces
RSC Adv., 2024, 4, 1-10
[DOI: 10.1039/D3RA06559F](https://doi.org/10.1039/D3RA06559F)
-## Tags
+## Tags.
`2D`, `Graphene`, `Hexagonal Boron Nitride`, `interface`, `stacking`
From b45946e649d06ae7f045289e558032fa84311a40 Mon Sep 17 00:00:00 2001
From: VsevolodX <79542055+VsevolodX@users.noreply.github.com>
Date: Thu, 2 Jan 2025 18:36:40 -0800
Subject: [PATCH 02/20] chore: add periods 2
---
.../defect_point_adatom_island_mos2_pt.md | 36 +++++++++----------
...mensurate-lattices-molybdenum-disulfide.md | 26 +++++++-------
...layer-twisted-nanoribbons-boron-nitride.md | 30 ++++++++--------
.../materials/specific/nanocluster-gold.md | 28 +++++++--------
...film-position-graphene-nickel-interface.md | 36 +++++++++----------
.../passivation-edge-silicon-nanowire.md | 30 ++++++++--------
.../specific/perturbation-ripples-graphene.md | 32 ++++++++---------
.../specific/slab-strontium-titanate.md | 28 +++++++--------
8 files changed, 123 insertions(+), 123 deletions(-)
diff --git a/lang/en/docs/tutorials/materials/specific/defect_point_adatom_island_mos2_pt.md b/lang/en/docs/tutorials/materials/specific/defect_point_adatom_island_mos2_pt.md
index 59333e9c..fbf1afab 100644
--- a/lang/en/docs/tutorials/materials/specific/defect_point_adatom_island_mos2_pt.md
+++ b/lang/en/docs/tutorials/materials/specific/defect_point_adatom_island_mos2_pt.md
@@ -3,9 +3,9 @@
render_macros: true
---
-# Pt Nanoparticles on MoS2(001) Surface via Adatoms
+# Pt Nanoparticles on MoS2(001) Surface via Adatoms.
-## Introduction
+## Introduction.
This tutorial demonstrates how to create a platinum island on MoS2 by sequentially adding Pt adatoms, following the methodology described in the literature.
@@ -19,23 +19,23 @@ We will recreate the Pt island structure shown in Figure 4b:
![Pt Island on MoS2](/images/tutorials/materials/defects/defect_point_adatom_island_mos2_pt/0-figure-from-manuscript.webp "Pt island formation on MoS2")
-## 1. Create MoS2 Substrate
+## 1. Create MoS2 Substrate.
-### 1.1. Load Base Material
+### 1.1. Load Base Material.
Navigate to [Materials Designer](../../../materials-designer/overview.md) and import the MoS2 2D material from [Standata](../../../materials-designer/header-menu/input-output/standata-import.md).
-### 1.2. Launch JupyterLite Session
+### 1.2. Launch JupyterLite Session.
Select the "Advanced > [JupyterLite Transformation](../../../materials-designer/header-menu/advanced/jupyterlite-dialog.md)" menu item to launch the JupyterLite environment.
-### 1.3. Open `create_adatom_defect.ipynb` Notebook
+### 1.3. Open `create_adatom_defect.ipynb` Notebook.
Find and open the `create_adatom_defect.ipynb` notebook. Select MoS2 as input material.
-## 2. Configure and Create Structure
+## 2. Configure and Create Structure.
-### 2.1. Set Parameters
+### 2.1. Set Parameters.
Set up the slab and defect parameters in the notebook:
@@ -98,13 +98,13 @@ Key parameters explained:
![Adatoms Setup](/images/tutorials/materials/defects/defect_point_adatom_island_mos2_pt/1-jl-setup-nb.webp "Pt adatoms setup")
-### 2.2. Run the Notebook
+### 2.2. Run the Notebook.
Execute the notebook to create the Pt island structure on MoS2 by selecting "Run" > "Run All Cells" from the JupyterLite menu.
![Results Preview](/images/tutorials/materials/defects/defect_point_adatom_island_mos2_pt/2-jl-result-preview.webp "Pt island results preview")
-### 2.3. Pass the Result to Materials Designer
+### 2.3. Pass the Result to Materials Designer.
The result can be passed to Materials Designer for visualization and viewed from the top:
@@ -114,24 +114,24 @@ And from the side:
![Complete Island, side view](/images/tutorials/materials/defects/defect_point_adatom_island_mos2_pt/5-wave-result-side.webp "Complete Pt island structure, side view")
-## 3. Analyze the Structure
+## 3. Analyze the Structure.
After adding all Pt atoms, verify the following:
-### 3.1. Base Layer Geometry
+### 3.1. Base Layer Geometry.
- Three Pt atoms should form a triangular base
- Each base Pt should be positioned atop Mo atoms
- Distance from surface S atoms should be ~1.2 Å
- Relaxation is needed to achieve the exact geometry from the publication, can be performed elsewhere
-### 3.2. Top Atom Position
+### 3.2. Top Atom Position.
- Fourth Pt should be centered above the triangle
- Position should be approximately above a surface S atom
- Height should be ~2.8 Å from surface (1.6 Å from base Pt atoms)
-## 4. Save the Structure
+## 4. Save the Structure.
The final structure will be automatically passed back to Materials Designer where user can:
@@ -139,7 +139,7 @@ The final structure will be automatically passed back to Materials Designer wher
2. Export it in various formats
3. Use it for further transformations
-## Interactive JupyterLite Notebook
+## Interactive JupyterLite Notebook.
The following embedded notebook demonstrates the complete process. Select "Run" > "Run All Cells".
@@ -151,7 +151,7 @@ The following embedded notebook demonstrates the complete process. Select "Run"
{% endwith %}
{% endwith %}
-## Parameter Fine-tuning
+## Parameter Fine-tuning.
To adjust the island structure:
@@ -163,7 +163,7 @@ To adjust the island structure:
- Adjust position to change island shape
- Modify height to change Pt-Pt spacing
-## References
+## References.
1. Saidi, W. A. (2015). Density Functional Theory Study of Nucleation and Growth of Pt Nanoparticles on MoS2(001) Surface. Crystal Growth & Design, 15(2), 642–652. [DOI: 10.1021/cg5013395](https://doi.org/10.1021/cg5013395){:target='_blank'}.
@@ -176,6 +176,6 @@ To adjust the island structure:
5. Mahbube Hortamani, Peter Kratzer, and Matthias Scheffler, "Density-functional study of Mn monosilicide on the Si(111) surface:
Film formation versus island nucleation", Phys. Rev. B 76, 235426 (2007). [DOI: 10.1103/PhysRevB.76.235426](https://doi.org/10.1103/PhysRevB.76.235426){:target='_blank'}.
-## Tags
+## Tags.
`MoS2`, `platinum`, `adatoms`, `surface science`, `2D materials`, `nanoparticles`, `Mo`, `S`, `Pt`
\ No newline at end of file
diff --git a/lang/en/docs/tutorials/materials/specific/interface-bilayer-twisted-commensurate-lattices-molybdenum-disulfide.md b/lang/en/docs/tutorials/materials/specific/interface-bilayer-twisted-commensurate-lattices-molybdenum-disulfide.md
index 97a287db..5160f9ee 100644
--- a/lang/en/docs/tutorials/materials/specific/interface-bilayer-twisted-commensurate-lattices-molybdenum-disulfide.md
+++ b/lang/en/docs/tutorials/materials/specific/interface-bilayer-twisted-commensurate-lattices-molybdenum-disulfide.md
@@ -3,9 +3,9 @@
render_macros: true
---
-# Twisted Bilayer Molybdenum Disulfide Structure Creation
+# Twisted Bilayer Molybdenum Disulfide Structure Creation.
-## Introduction
+## Introduction.
This tutorial demonstrates the process of creating a twisted bilayer molybdenum disulfide (MoS2) structure based on the work presented in the following manuscript.
@@ -21,7 +21,7 @@ The Figure 4 shows the twisted bilayer MoS2 configurations.
![Twisted Bilayer Molybdenum Disulfide](/images/tutorials/materials/interfaces/twisted-bilayer-molybdenum-disulfide/MoS2-twisted-bilayers.png "Twisted Bilayer Molybdenum Disulfide")
-## 1. Load and preview MoS2 structure
+## 1. Load and preview MoS2 structure.
First, we navigate to [Materials Designer](../../../materials-designer/overview.md) and import the MoS2 material from the [Standata](../../../materials-designer/header-menu/input-output/standata-import.md).
@@ -31,16 +31,16 @@ First, we navigate to [Materials Designer](../../../materials-designer/overview.
Then we will use the [JupyterLite](../../../jupyterlite/overview.md) environment to create a twisted bilayer molybdenum disulfide structure.
-## 2. Create MoS2 bilayer with a twist angle of 22 degrees
+## 2. Create MoS2 bilayer with a twist angle of 22 degrees.
-### 2.1 Launch JupyterLite Session
+### 2.1 Launch JupyterLite Session.
Select the "Advanced > [JupyterLite Transformation](../../../materials-designer/header-menu/advanced/jupyterlite-dialog.md)" menu item to launch the JupyterLite environment.
![JupyterLite Dialog](/images/jupyterlite/md-advanced-jl.webp "JupyterLite Dialog")
-### 2.2. Open and modify the notebook
+### 2.2. Open and modify the notebook.
Next, edit `create_twisted_interface_with_commnesurate_lattices.ipynb` notebook to modify the parameters by adding: `TARGET_TWIST_ANGLE = 22` and `INTERFACE_DISTANCE = 6.5` -- found in the publication description.
@@ -69,13 +69,13 @@ VISUALIZE_REPETITIONS = [3, 3, 1]
![Notebook setup](/images/tutorials/materials/interfaces/twisted-bilayer-molybdenum-disulfide/jl-set-nb.png "Notebook setup")
-### 2.3. Run the Notebook
+### 2.3. Run the Notebook.
After setting the parameters, run the notebook to create the twisted bilayer molybdenum disulfide structure.
![Run All](/images/jupyterlite/run-all.webp "Run All")
-### 2.4. View Results and pass to Materials Designer
+### 2.4. View Results and pass to Materials Designer.
The generation might take some time.
After that, the user can pass the material to the Materials Designer for further analysis.
@@ -84,9 +84,9 @@ The interface for 22 degrees twist is shown below.
![Result Material, 22 degrees](/images/tutorials/materials/interfaces/twisted-bilayer-molybdenum-disulfide/mos2-result-wavejs-22.png "MoS2 Twisted Bilayer, 22 degrees")
-## 3. Create bilayers with other twist angles
+## 3. Create bilayers with other twist angles.
-### 3.1. Repeat the steps above
+### 3.1. Repeat the steps above.
To create a twisted bilayer MoS2 structure with a different twist angle, repeat the steps above, adjusting the `TARGET_TWIST_ANGLE` and `INTERFACE_DISTANCE` parameters accordingly.
Values for angle and associated interlayer separation provided below come from the description of Figure 4 in the publication, below each example has an image of the resulting material.
@@ -128,7 +128,7 @@ INTERFACE_DISTANCE = 6.2
![Result Material, 60 degrees](/images/tutorials/materials/interfaces/twisted-bilayer-molybdenum-disulfide/mos2-result-wavejs-60.png "MoS2 Twisted Bilayer, 60 degrees")
-## Interactive JupyterLite Notebook
+## Interactive JupyterLite Notebook.
The interactive JupyterLite notebook for creating twisted bilayer MoS2 structures can be accessed below. To run the notebook, click on the "Run All" button.
@@ -141,11 +141,11 @@ The interactive JupyterLite notebook for creating twisted bilayer MoS2 structure
{% endwith %}
{% endwith %}
-## References
+## References.
1. Kaihui Liu, Liming Zhang, Ting Cao, Chenhao Jin, Diana Qiu, Qin Zhou, Alex Zettl, Peidong Yang, Steve G. Louie & Feng Wang, "Evolution of interlayer coupling in twisted molybdenum disulfide bilayers" Nature Communications volume 5, Article number: 4966 (2014) [DOI: 10.1038/ncomms5966](https://doi.org/10.1038/ncomms5966)
2. Cao, Y., Fatemi, V., Fang, S. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018). [DOI: 10.1038/nature26160](https://doi.org/10.1038/nature26160)
-## Tags
+## Tags.
`2d-materials`, `layers`, `bilayer`, `twisted`, `commensurate`, `molybdenum`, `disulfide`
diff --git a/lang/en/docs/tutorials/materials/specific/interface-bilayer-twisted-nanoribbons-boron-nitride.md b/lang/en/docs/tutorials/materials/specific/interface-bilayer-twisted-nanoribbons-boron-nitride.md
index 62010b9d..db1016fc 100644
--- a/lang/en/docs/tutorials/materials/specific/interface-bilayer-twisted-nanoribbons-boron-nitride.md
+++ b/lang/en/docs/tutorials/materials/specific/interface-bilayer-twisted-nanoribbons-boron-nitride.md
@@ -3,9 +3,9 @@
render_macros: true
---
-# Twisted Bilayer Boron Nitride (TBBN) Structure Creation
+# Twisted Bilayer Boron Nitride (TBBN) Structure Creation.
-## Introduction
+## Introduction.
This tutorial demonstrates the process of creating a twisted bilayer boron nitride (TBBN) structure based on the work presented in the following manuscript.
@@ -21,7 +21,7 @@ The image shows the twisted bilayer h-BN structure with a twist angle of 2.64°
![Twisted Bilayer Boron Nitride](/images/tutorials/materials/interfaces/twisted-bilayer-boron-nitride/tbbn-paper-image.png "Twisted Bilayer Boron Nitride")
-## 1. Load and preview BN structure
+## 1. Load and preview BN structure.
First, we navigate to [Materials Designer](../../../materials-designer/overview.md) and import the BN material from the [Standata](../../../materials-designer/header-menu/input-output/standata-import.md).
@@ -29,15 +29,15 @@ First, we navigate to [Materials Designer](../../../materials-designer/overview.
Then we will use the [JupyterLite](../../../jupyterlite/overview.md) environment to create a twisted bilayer boron nitride structure.
-## 2. Create bilayer with a twist angle of 2.64°
+## 2. Create bilayer with a twist angle of 2.64°.
-### 2.1 Launch JupyterLite Session
+### 2.1 Launch JupyterLite Session.
Select the "Advanced > [JupyterLite Transformation](../../../materials-designer/header-menu/advanced/jupyterlite-dialog.md)" menu item to launch the JupyterLite environment.
![JupyterLite Dialog](/images/jupyterlite/md-advanced-jl.webp "JupyterLite Dialog")
-### 2.2. Open and modify the notebook
+### 2.2. Open and modify the notebook.
Next, edit `create_twisted_interface_with_nanoribbons.ipynb` notebook to modify the parameters by adding: `RIBBON_WIDTH = 50` and `RIBBON_LENGTH = 50`, `TWIST_ANGLE = 2.64`.
Adjust the "1.1. Set up slab parameters" cell in the notebook according to:
@@ -64,34 +64,34 @@ VISUALIZE_REPETITIONS = [1, 1, 1]
![Notebook setup](/images/tutorials/materials/interfaces/twisted-bilayer-boron-nitride/jl-set-nb.png "Notebook setup")
-### 2.3. Run the Notebook
+### 2.3. Run the Notebook.
After setting the parameters, run the notebook with "Run" > "Run All" option to create the twisted bilayer boron nitride structure.
![Run All](/images/jupyterlite/run-all.webp "Run All")
-### 2.4. Analyze the Results
+### 2.4. Analyze the Results.
After running the notebook, the user will be able to visualize the created twisted bilayer boron nitride structure.
![Review the Results](/images/tutorials/materials/interfaces/twisted-bilayer-boron-nitride/tbbn-result-jl.png "Review the Results")
-### 2.5. Pass Results to the Materials Designer
+### 2.5. Pass Results to the Materials Designer.
After reviewing the results, the user can pass the material to the Materials Designer for further analysis.
![Result Material](/images/tutorials/materials/interfaces/twisted-bilayer-boron-nitride/tbbn-result-wavejs.png "Result Material")
-## 3. Create a TBBN structure with a twist angle of 62.64°
+## 3. Create a TBBN structure with a twist angle of 62.64°.
-### 3.1. Repeat the steps above
+### 3.1. Repeat the steps above.
To create a twisted bilayer boron nitride structure with a twist angle of 62.64°, repeat the above steps 2.1 -- 2.5 with the following modifications.
Set `TWIST_ANGLE = 62.64` in the "1.1. Set up slab parameters" cell in the notebook.
-### 3.2. View Results and pass to the Materials Designer
+### 3.2. View Results and pass to the Materials Designer.
After running the notebook, the user will be able to visualize the created twisted bilayer boron nitride structure with a twist angle of 62.64°.
@@ -99,7 +99,7 @@ After reviewing the results, the user can pass the material to the Materials Des
![Twisted Bilayer Boron Nitride Structure with 62.64° Twist Angle](/images/tutorials/materials/interfaces/twisted-bilayer-boron-nitride/tbbn-62_64.png "Twisted Bilayer Boron Nitride Structure with 62.64° Twist Angle")
-## Interactive JupyterLite Notebook
+## Interactive JupyterLite Notebook.
The interactive JupyterLite notebook for creating the twisted bilayer boron nitride structure can be accessed below. Select "Run" > "Run All Cells" to create two materials.
@@ -111,12 +111,12 @@ The interactive JupyterLite notebook for creating the twisted bilayer boron nitr
{% endwith %}
{% endwith %}
-## References
+## References.
1. **Lede Xian, Dante M. Kennes, Nicolas Tancogne-Dejean, Massimo Altarelli, and Angel Rubio**,
"Multiflat Bands and Strong Correlations in Twisted Bilayer Boron Nitride: Doping-Induced Correlated Insulator and Superconductor" Phys. Rev. Lett. 125, 086402 – Published 20 August 2020 DOI: 10.1021/acs.nanolett.9b00986
-## Tags
+## Tags.
`twisted-bilayer`,`nanoribbons`, `boron-nitride`, `BN`, `boron`, `nitrogen`
diff --git a/lang/en/docs/tutorials/materials/specific/nanocluster-gold.md b/lang/en/docs/tutorials/materials/specific/nanocluster-gold.md
index bc5e4938..9a829660 100644
--- a/lang/en/docs/tutorials/materials/specific/nanocluster-gold.md
+++ b/lang/en/docs/tutorials/materials/specific/nanocluster-gold.md
@@ -3,9 +3,9 @@
render_macros: true
---
-# Gold Nanoclusters
+# Gold Nanoclusters.
-## Introduction
+## Introduction.
This tutorial demonstrates the process of creating a gold nanoparticle structures based on the work presented in the following manuscript.
@@ -20,7 +20,7 @@ We use the [Materials Designer](../../../materials-designer/overview.md) to crea
![Gold Nanoparticles](/images/tutorials/materials/0d_materials/nanocluster_gold/0-manuscript-image.webp "Fig. 2. Gold Nanoparticles")
-## 1. Load and preview Gold structure
+## 1. Load and preview Gold structure.
First, we navigate to [Materials Designer](../../../materials-designer/overview.md) and import the Gold material from the [Standata](../../../materials-designer/header-menu/input-output/standata-import.md).
@@ -28,15 +28,15 @@ First, we navigate to [Materials Designer](../../../materials-designer/overview.
Then we will use the [JupyterLite](../../../jupyterlite/overview.md) environment to create gold nanoparticle structures.
-## 2. Create cuboctahedra
+## 2. Create cuboctahedra.
-### 2.1 Launch JupyterLite Session
+### 2.1 Launch JupyterLite Session.
Select the "Advanced > [JupyterLite Transformation](../../../materials-designer/header-menu/advanced/jupyterlite-dialog.md)" menu item to launch the JupyterLite environment.
![JupyterLite Dialog](/images/jupyterlite/md-advanced-jl.webp "JupyterLite Dialog")
-### 2.2. Open and modify the notebook
+### 2.2. Open and modify the notebook.
Next, edit `create_cluster_ase.ipynb` notebook to modify the parameters by changing values:
@@ -57,13 +57,13 @@ parameters = {
![Setup for cuboctahedron cluster](/images/tutorials/materials/0d_materials/nanocluster_gold/2-jl-setup.webp "Setup for cuboctahedron cluster")
-### 2.3. Run the notebook
+### 2.3. Run the notebook.
Run the notebook by selecting "Run > Run All Cells" from the menu.
![Run All](/images/jupyterlite/run-all.webp "Run All")
-### 2.4. Analyze the Results
+### 2.4. Analyze the Results.
After running the notebook, the octahedral gold nanoparticle structure will be created.
@@ -73,7 +73,7 @@ For better view of the solid symmetry rotation of image might be needed like `"r
![Cuboctahedron Gold Nanocluster](/images/tutorials/materials/0d_materials/nanocluster_gold/3-jl-result-preview.webp "Cuboctahedron Gold Nanocluster")
-### 2.5. Pass the Material to the Materials Designer
+### 2.5. Pass the Material to the Materials Designer.
After reviewing the results, the user can pass the material to Materials Designer for further analysis.
@@ -81,9 +81,9 @@ After reviewing the results, the user can pass the material to Materials Designe
Or the user can [save or download](../../../materials-designer/header-menu/input-output.md) the material in Material JSON format or POSCAR format.
-## 3. Create clusters with other shapes and sizes
+## 3. Create clusters with other shapes and sizes.
-### 3.1. Repeat the steps above
+### 3.1. Repeat the steps above.
Repeat the steps above to create gold nanoparticle structures with other shapes and sizes.
@@ -146,7 +146,7 @@ parameters = {
![Icosahedron 309](/images/tutorials/materials/0d_materials/nanocluster_gold/jl-result-preview-icosahedron-309.webp "Icosahedron 309")
-## Interactive JupiterLite Notebook
+## Interactive JupiterLite Notebook.
The interactive JupyterLite notebook for creating Gold Nanoclusters can be accessed below. To run the notebook, click on the "Run All" button.
@@ -158,7 +158,7 @@ The interactive JupyterLite notebook for creating Gold Nanoclusters can be acces
{% endwith %}
{% endwith %}
-## References
+## References.
1. **A. H. Larsen, J. Kleis, K. S. Thygesen, J. K. Nørskov, and K. W. Jacobsen**,
"Electronic shell structure and chemisorption on gold nanoparticles",
@@ -166,6 +166,6 @@ The interactive JupyterLite notebook for creating Gold Nanoclusters can be acces
[DOI: 10.1103/PhysRevB.84.245429](https://doi.org/10.1103/PhysRevB.84.245429){:target='_blank'}.
-## Tags
+## Tags.
`gold`, `cluster`, `nanoparticle`, `cuboctahedron`, `icosahedron`
\ No newline at end of file
diff --git a/lang/en/docs/tutorials/materials/specific/optimize-film-position-graphene-nickel-interface.md b/lang/en/docs/tutorials/materials/specific/optimize-film-position-graphene-nickel-interface.md
index 7b7e4666..7567f060 100644
--- a/lang/en/docs/tutorials/materials/specific/optimize-film-position-graphene-nickel-interface.md
+++ b/lang/en/docs/tutorials/materials/specific/optimize-film-position-graphene-nickel-interface.md
@@ -3,9 +3,9 @@
render_macros: true
---
-# Graphene/Ni(111) Interface Optimization
+# Graphene/Ni(111) Interface Optimization.
-## Introduction
+## Introduction.
This tutorial demonstrates how to create and optimize a Graphene/Ni(111) interface structure following the experimental observations presented in the literature. We will focus on finding the most energetically favorable position of graphene on the Ni(111) surface.
@@ -19,23 +19,23 @@ We will recreate the interface structure and optimize the film position to match
![Gr/Ni Interface](/images/tutorials/materials/optimization/optimize_film_position_graphene_nickel_interface/0-figure-from-manuscript.webp "Optimal position of graphene on Ni(111)")
-## 1. Create Interface Structure
+## 1. Create Interface Structure.
-### 1.1. Load Base Materials
+### 1.1. Load Base Materials.
Navigate to [Materials Designer](../../../materials-designer/overview.md) and import both graphene and nickel materials from the [Standata](../../../materials-designer/header-menu/input-output/standata-import.md).
![Import Graphene and Ni](/images/materials-designer/import/import_from_standata.webp "Import Gr and Ni from Standata")
-### 1.2. Launch JupyterLite Session
+### 1.2. Launch JupyterLite Session.
Select the "Advanced > [JupyterLite Transformation](../../../materials-designer/header-menu/advanced/jupyterlite-dialog.md)" menu item to launch the JupyterLite environment.
-### 1.3. Open `create_interface_with_min_strain_zsl.ipynb` notebook
+### 1.3. Open `create_interface_with_min_strain_zsl.ipynb` notebook.
Find and open the `create_interface_with_min_strain_zsl.ipynb` notebook. This notebook will help us create the initial interface structure.
-### 1.4. Set up interface parameters
+### 1.4. Set up interface parameters.
Edit the notebook parameters to create the Gr/Ni(111) interface:
@@ -57,7 +57,7 @@ INTERFACE_VACUUM = 20.0 # in Angstrom
![Interface Parameters](/images/tutorials/materials/optimization/optimize_film_position_graphene_nickel_interface/2-jl-setup-nb-interface.webp "Interface parameters for Gr/Ni(111)")
-### 1.5. Run interface creation
+### 1.5. Run interface creation.
Run the notebook using "Run > Run All Cells". This will:
@@ -65,13 +65,13 @@ Run the notebook using "Run > Run All Cells". This will:
2. Find the optimal lattice matching using the ZSL algorithm
3. Generate the initial interface structure
-## 2. Optimize Film Position
+## 2. Optimize Film Position.
-### 2.1. Open `optimize_film_position.ipynb` notebook
+### 2.1. Open `optimize_film_position.ipynb` notebook.
Find and open the `optimize_film_position.ipynb` notebook which will help us find the optimal position of the graphene layer.
-### 2.2. Set optimization parameters
+### 2.2. Set optimization parameters.
Configure the optimization parameters:
@@ -93,7 +93,7 @@ Key parameters explained:
![Optimization Parameters](/images/tutorials/materials/optimization/optimize_film_position_graphene_nickel_interface/3-jl-setup-nb-final.webp "Optimization parameters for Gr/Ni(111)")
-### 2.3. Run optimization
+### 2.3. Run optimization.
Run all cells in the notebook. The optimization will:
@@ -105,7 +105,7 @@ Run all cells in the notebook. The optimization will:
![Energy Heatmap](/images/tutorials/materials/optimization/optimize_film_position_graphene_nickel_interface/5-energy-heatmap.webp "Energy heatmap of film positions")
-## 3. Analyze Results
+## 3. Analyze Results.
Compare the original and optimized interface structures to see the difference in the graphene position.
@@ -114,14 +114,14 @@ Compare the original and optimized interface structures to see the difference in
![Final Interface](/images/tutorials/materials/optimization/optimize_film_position_graphene_nickel_interface/7-wave-result-final.webp "Optimized Gr/Ni Interface")
-## 4. Save Optimized Structure
+## 4. Save Optimized Structure.
The optimized interface structure will be automatically passed back to Materials Designer where you can:
1. Save it in the workspace
2. Export it in various formats (JSON, POSCAR, etc.)
3. Use it for further calculations
-## Interactive JupyterLite Notebook
+## Interactive JupyterLite Notebook.
The following JupyterLite notebook demonstrates the complete process. Select "Run" > "Run All Cells".
@@ -133,7 +133,7 @@ The following JupyterLite notebook demonstrates the complete process. Select "Ru
{% endwith %}
{% endwith %}
-## Parameter Fine-tuning
+## Parameter Fine-tuning.
To adjust the interface optimization:
@@ -147,7 +147,7 @@ To adjust the interface optimization:
- Adjust `GRID_RANGE` to search different areas
- Enable 3D visualization with `SHOW_3D_LANDSCAPE = True`
-## References
+## References.
1. Dahal, A., & Batzill, M. (2014). Graphene–nickel interfaces: a review. Nanoscale, 6(5), 2548-2562. [DOI: 10.1039/c3nr05279f](https://doi.org/10.1039/c3nr05279f)
@@ -155,6 +155,6 @@ To adjust the interface optimization:
3. Bertoni, G., Calmels, L., Altibelli, A., & Serin, V. (2004). First-principles calculation of the electronic structure and EELS spectra at the graphene/Ni(111) interface. Physical Review B, 71(7). [DOI: 10.1103/PhysRevB.71.075402](https://journals.aps.org/prb/abstract/10.1103/PhysRevB.71.075402)
-## Tags
+## Tags.
`graphene`, `nickel`, `interface`, `optimization`, `2D materials`, `surface science`, `Gr/Ni(111)`, `C`, `Ni`
diff --git a/lang/en/docs/tutorials/materials/specific/passivation-edge-silicon-nanowire.md b/lang/en/docs/tutorials/materials/specific/passivation-edge-silicon-nanowire.md
index 8be86554..f1b59854 100644
--- a/lang/en/docs/tutorials/materials/specific/passivation-edge-silicon-nanowire.md
+++ b/lang/en/docs/tutorials/materials/specific/passivation-edge-silicon-nanowire.md
@@ -3,9 +3,9 @@
render_macros: true
---
-# Passivation of Silicon Nanowire
+# Passivation of Silicon Nanowire.
-## Introduction
+## Introduction.
This tutorial demonstrates the process of creating passivated silicon nanowires based on the work presented in the following manuscript, where the chemical gap tuning in silicon nanowires is studied.
@@ -24,25 +24,25 @@ Specifically, the material from FIG. 1. of the publication:
![Passivated Silicon nanowire](/images/tutorials/materials/passivation/passivation_edge_silicon_nanowire/0-figure-from-manuscript.webp "Passivated Silicon nanowire, FIG. 1.")
-## 1. Create Silicon Nanowire
+## 1. Create Silicon Nanowire.
-### 1.1. Load Silicon Material
+### 1.1. Load Silicon Material.
Since we're using Silicon, it can be already loaded as the default material and we can skip this step.
Otherwise, we navigate to [Materials Designer](../../../materials-designer/overview.md) and import the silicon material from the [Standata](../../../materials-designer/header-menu/input-output/standata-import.md).
-### 1.2. Launch JupyterLite Session
+### 1.2. Launch JupyterLite Session.
Select the "Advanced > [JupyterLite Transformation](../../../materials-designer/header-menu/advanced/jupyterlite-dialog.md)" menu item to launch the JupyterLite environment.
![JupyterLite Dialog](/images/jupyterlite/md-advanced-jl.webp "JupyterLite Dialog")
-### 1.3. Open `create_nanowire_custom_shapeipynb` notebook
+### 1.3. Open `create_nanowire_custom_shapeipynb` notebook.
Find `create_nanowire_custom_shape.ipynb` in the list of notebooks and click/double-click open it.
-### 1.4. Open and modify the notebook
+### 1.4. Open and modify the notebook.
Next, we need to create a nanowire wit ha custom shape.
@@ -117,7 +117,7 @@ vertices = [
condition = CustomCoordinateCondition(vertices=vertices).condition
```
-## 1.5. Run the Notebook and use the Material
+## 1.5. Run the Notebook and use the Material.
Run the notebook by clicking `Run` > `Run All` in the top menu to run cells and wait for the results to appear.
@@ -127,9 +127,9 @@ After running the notebook and submitting the material, the user will be able to
![Silicon Nanowire](/images/tutorials/materials/passivation/passivation_edge_silicon_nanowire/3-silicon-nanowire.webp "Silicon Nanowire")
-## 2. Passivate with Hydrogen
+## 2. Passivate with Hydrogen.
-### 2.1. Setup the Passivation
+### 2.1. Setup the Passivation.
Open JupyterLite Session again and select Silicon Nanowire material for Input Materials.
@@ -170,13 +170,13 @@ Here's the visual of the updated content:
![Notebook setup](/images/tutorials/materials/passivation/passivation_edge_silicon_nanowire/5-jl-setup.webp "Notebook setup")
-### 2.2. Run the notebook and analyze the results
+### 2.2. Run the notebook and analyze the results.
After running the notebook, the user will be able to visualize the structure of Silicon Nanowire with substitution defects.
![Review the Results](/images/tutorials/materials/passivation/passivation_edge_silicon_nanowire/6-jl-result-preview.webp "Review the Results")
-## 3. Pass the Material to Materials Designer
+## 3. Pass the Material to Materials Designer.
The user can pass the material with substitution defects in the current Materials Designer environment and save it.
@@ -185,7 +185,7 @@ The user can pass the material with substitution defects in the current Material
Or the user can [save or download](../../../materials-designer/header-menu/input-output.md) the material in Material JSON format or POSCAR format.
-## Interactive JupyterLite Notebook
+## Interactive JupyterLite Notebook.
The following JupyterLite notebook demonstrates the process of creating materials with hydrogen passivation of silicon nanowire. Select "Run" > "Run All Cells".
@@ -197,13 +197,13 @@ The following JupyterLite notebook demonstrates the process of creating material
{% endwith %}
{% endwith %}
-## References
+## References.
1. B. Aradi, L. E. Ramos, P. Deák, Th. Köhler, F. Bechstedt, R. Q. Zhang, and Th. Frauenheim,
Theoretical study of the chemical gap tuning in silicon nanowires
Phys. Rev. B 76, 035305 (2007)
DOI: [10.1103/PhysRevB.76.035305](https://doi.org/10.1103/PhysRevB.76.035305)
-## Tags
+## Tags.
`silicon`, `hydrogen`, `passivation`, `nanowire`
diff --git a/lang/en/docs/tutorials/materials/specific/perturbation-ripples-graphene.md b/lang/en/docs/tutorials/materials/specific/perturbation-ripples-graphene.md
index 23651af0..691af053 100644
--- a/lang/en/docs/tutorials/materials/specific/perturbation-ripples-graphene.md
+++ b/lang/en/docs/tutorials/materials/specific/perturbation-ripples-graphene.md
@@ -5,7 +5,7 @@ render_macros: true
# Ripple perturbation of a Graphene sheet.
-## Introduction
+## Introduction.
This tutorial demonstrates the process of creating edge induced ripples in graphene nanosheet based on the work presented in the following manuscript, where the mechanical properties of graphene edges were studied.
@@ -19,25 +19,25 @@ We will focus on creating graphene with edge-induced ripples that match the patt
![Rippled Graphene](/images/tutorials/materials/defects/perturbation_ripple_graphene/0-figure-from-manuscript.webp "Rippled Graphene, FIG. 1.")
-## 1. Create Graphene Nanoribbon
+## 1. Create Graphene Nanoribbon.
-### 1.1. Load Graphene Material
+### 1.1. Load Graphene Material.
Navigate to [Materials Designer](../../../materials-designer/overview.md) and import the graphene material from the [Standata](../../../materials-designer/header-menu/input-output/standata-import.md).
![Standata Graphene Import](/images/tutorials/materials/defects/defect_creation_point_substitution_graphene/1-standata-graphene.webp "Standata Graphene Import")
-### 1.2. Launch JupyterLite Session
+### 1.2. Launch JupyterLite Session.
Select the "Advanced > [JupyterLite Transformation](../../../materials-designer/header-menu/advanced/jupyterlite-dialog.md)" menu item to launch the JupyterLite environment.
![JupyterLite Dialog](/images/jupyterlite/md-advanced-jl.webp "JupyterLite Dialog")
-### 1.3. Open `create_nanoribbon.ipynb` notebook
+### 1.3. Open `create_nanoribbon.ipynb` notebook.
Find `create_nanoribbon.ipynb` in the list of notebooks and click/double-click to open it.
-### 1.4. Set up nanoribbon parameters
+### 1.4. Set up nanoribbon parameters.
Edit notebook to set the nanoribbon parameters:
@@ -52,19 +52,19 @@ EDGE_TYPE = "zigzag" # "zigzag" or "armchair"
![Setup Nanoribbon Parameters](/images/tutorials/materials/defects/perturbation_ripple_graphene/2-jl-setup-nb-nanoribbon.webp "Setup Nanoribbon Parameters")
-### 1.5. Run the notebook
+### 1.5. Run the notebook.
After setting the parameters, run the notebook by selecting "Run > Run All Cells" from the menu. This will create a graphene nanoribbon with the specified dimensions.
![Nanoribbon Result](/images/tutorials/materials/defects/perturbation_ripple_graphene/3-wave-result-nanoribbon.webp "Graphene Nanoribbon")
-## 2. Create Ripples in the Nanoribbon
+## 2. Create Ripples in the Nanoribbon.
-### 2.1. Open `create_perturbation_custom.ipynb` notebook
+### 2.1. Open `create_perturbation_custom.ipynb` notebook.
Find `create_perturbation_custom.ipynb` in the list of notebooks and click/double-click to open it.
-### 2.2. Set up perturbation parameters
+### 2.2. Set up perturbation parameters.
Next, we need to set up the parameters for creating rippled graphene.
@@ -125,13 +125,13 @@ Key parameters explained:
- `EDGE_WIDTH` Controls how far the ripples extend from the edges (0.25 in crystal coordinates)
- `PHASE_X`/`PHASE_Y` Controls the phase shift of the ripple pattern
-### 2.3. Run the notebook
+### 2.3. Run the notebook.
After setting the parameters, run the notebook by selecting "Run > Run All Cells" from the menu.
![Run All](/images/jupyterlite/run-all.webp "Run All")
-## 3. Pass the Material to Materials Designer
+## 3. Pass the Material to Materials Designer.
The rippled graphene structure will be automatically passed back to the current Materials Designer environment where user can save it.
@@ -145,7 +145,7 @@ Graphene with edge-induced ripples with amplitude of 0.27 crystal units.
Or user can [save or download](../../../materials-designer/header-menu/input-output.md) the material in Material JSON format or POSCAR format.
-## Interactive JupyterLite Notebook
+## Interactive JupyterLite Notebook.
The following JupyterLite notebook demonstrates the process of creating rippled graphene. Select "Run" > "Run All Cells".
@@ -157,7 +157,7 @@ The following JupyterLite notebook demonstrates the process of creating rippled
{% endwith %}
{% endwith %}
-## Parameters Fine-tuning
+## Parameters Fine-tuning.
If user need to adjust the ripple pattern, user can modify these key parameters:
@@ -173,7 +173,7 @@ If user need to adjust the ripple pattern, user can modify these key parameters:
4. To change the ripple pattern:
- Adjust PHASE_X and PHASE_Y to modify the wave interference pattern
-## References
+## References.
1. Thompson-Flagg, R. C., Moura, M. J. B., & Marder, M. (2009). Rippling of graphene. EPL (Europhysics Letters), 85(4), 46002. [DOI: 10.1209/0295-5075/85/46002](https://doi.org/10.1209/0295-5075/85/46002)
@@ -181,6 +181,6 @@ If user need to adjust the ripple pattern, user can modify these key parameters:
3. L. A. Openov & A. I. Podlivaev, "Interaction of the Stone-Wales defects in graphene", Physics of the Solid State, 52, 1, 2010. [DOI: 10.1134/S1063783415070240](https://doi.org/10.1134/S1063783415070240)
-## Tags
+## Tags.
`graphene`, `ripples`, `perturbation`, `2D materials`, `edge effects`, `C`
\ No newline at end of file
diff --git a/lang/en/docs/tutorials/materials/specific/slab-strontium-titanate.md b/lang/en/docs/tutorials/materials/specific/slab-strontium-titanate.md
index 546b4d45..ea0f511a 100644
--- a/lang/en/docs/tutorials/materials/specific/slab-strontium-titanate.md
+++ b/lang/en/docs/tutorials/materials/specific/slab-strontium-titanate.md
@@ -3,9 +3,9 @@
render_macros: true
---
-# Strontium Titanate Slabs
+# Strontium Titanate Slabs.
-## Introduction
+## Introduction.
This tutorial demonstrates the process of creating strontium titanate (SrTiO3) slabs based on the work presented in the following manuscript, where the electronic properties of SrTiO3 slabs are studied.
@@ -21,25 +21,25 @@ We will focus on creating SrTiO3 (011) slabs with different terminati
![Strontium Titanate Slabs](/images/tutorials/materials/2d_materials/slab_strontium_titanate/0-figure-from-manuscript.webp "Strontium Titanate Slabs, FIG. 2.")
-## 1. Create Strontium Titanate Slab
+## 1. Create Strontium Titanate Slab.
-### 1.1. Load Strontium Titanate Material
+### 1.1. Load Strontium Titanate Material.
Navigate to [Materials Designer](../../../materials-designer/overview.md) and import the strontium titanate material from the [Standata](../../../materials-designer/header-menu/input-output/standata-import.md).
![Strontium Titanate Material](/images/tutorials/materials/2d_materials/slab_strontium_titanate/original-material.webp "Strontium Titanate Material")
-### 1.2. Launch JupyterLite Session
+### 1.2. Launch JupyterLite Session.
Select the "Advanced > [JupyterLite Transformation](../../../materials-designer/header-menu/advanced/jupyterlite-dialog.md)" menu item to launch the JupyterLite environment.
![JupyterLite Dialog](/images/jupyterlite/md-advanced-jl.webp "JupyterLite Dialog")
-### 1.3. Open `create_slab.ipynb` notebook
+### 1.3. Open `create_slab.ipynb` notebook.
Find `create_slab.ipynb` in the list of notebooks and click/double-click open it.
-### 1.4. Open and modify the notebook
+### 1.4. Open and modify the notebook.
Next, we need to create a SrTiO3 slab with the (011) orientation.
@@ -88,24 +88,24 @@ This will allow for symmetry breaking and correct detection for all possible ter
![Rotate Material](/images/tutorials/materials/2d_materials/slab_strontium_titanate/jl-setup-rotation.webp "Rotate Material")
-### 1.5. Run the notebook
+### 1.5. Run the notebook.
After setting the parameters, run the notebook by selecting "Run > Run All Cells" from the menu.
![Run All](/images/jupyterlite/run-all.webp "Run All")
-## 2. Analyze the Results
+## 2. Analyze the Results.
After running the notebook, the slabs for different possible terminations should apper in the preview.
![Strontium Titanate Slab](/images/tutorials/materials/2d_materials/slab_strontium_titanate/jl-result-preview.webp "Strontium Titanate Slab")
-### 2.1. Select the desired termination
+### 2.1. Select the desired termination.
If the interactive selection of terminations is enabled, select the desired termination from the list or change the `TERMINATION_INDEX` parameter in the notebook and rerun it.
-## 3. Pass the Material to Materials Designer
+## 3. Pass the Material to Materials Designer.
The user can pass the material with the selected termination in the current Materials Designer environment and save it.
@@ -114,7 +114,7 @@ The user can pass the material with the selected termination in the current Mate
Or the user can [save or download](../../../materials-designer/header-menu/input-output.md) the material in Material JSON format or POSCAR format.
-## Interactive JupyterLite Notebook
+## Interactive JupyterLite Notebook.
The following JupyterLite notebook demonstrates the process of creating strontium titanate slabs. Select "Run" > "Run All Cells".
@@ -127,12 +127,12 @@ The following JupyterLite notebook demonstrates the process of creating strontiu
{% endwith %}
{% endwith %}
-## References
+## References.
1. R. I. Eglitis and David Vanderbilt, "First-principles calculations of atomic and electronic structure of SrTiO3 (001) and (011) surfaces", Phys. Rev. B 77, 195408 (2008) [DOI: 10.1103/PhysRevB.77.195408](https://doi.org/10.1103/PhysRevB.77.195408)
2. Atashi B. Mukhopadhyay, Javier F. Sanz, and Charles B. Musgrave "First-principles calculations of structural and electronic properties of monoclinic hafnia surfaces", Phys. Rev. B 73, 115330 (2006) DOI: [10.1103/PhysRevB.73.115330](https://doi.org/10.1103/PhysRevB.73.115330)
-## Tags
+## Tags.
`slab`, `strontium titanate`, `SrTiO3`, `terminations`, `surface`
From f08ed5f7766d2fce78f5b37b6bef7cb22027941c Mon Sep 17 00:00:00 2001
From: VsevolodX <79542055+VsevolodX@users.noreply.github.com>
Date: Fri, 3 Jan 2025 13:58:25 -0800
Subject: [PATCH 03/20] update: place tags to yaml ath the top, remove from
bottom
---
.../defect-point-interstitial-tin-oxide.md | 15 ++++++++++++---
.../defect-point-pair-gallium-nitride.md | 17 ++++++++++++++---
.../defect-point-substitution-graphene.md | 12 +++++++++---
.../defect-point-vacancy-boron-nitride.md | 13 ++++++++++---
.../specific/defect-surface-adatom-graphene.md | 12 +++++++++---
.../defect-surface-island-titanium-nitride.md | 14 +++++++++++---
.../specific/defect-surface-step-platinum.md | 14 +++++++++++---
.../defect_point_adatom_island_mos2_pt.md | 16 +++++++++++++---
.../grain-boundary-2d-boron-nitride.md | 13 ++++++++++---
.../grain-boundary-3d-fcc-metals-copper.md | 13 ++++++++++---
...dioxide-hafnium-dioxide-titanium-nitride.md | 18 +++++++++++++++---
.../interface-2d-2d-graphene-boron-nitride.md | 12 +++++++++---
...interface-2d-3d-graphene-silicon-dioxide.md | 14 +++++++++++---
.../interface-3d-3d-copper-silicon-dioxide.md | 14 +++++++++++---
...mmensurate-lattices-molybdenum-disulfide.md | 14 +++++++++++---
...ilayer-twisted-nanoribbons-boron-nitride.md | 14 ++++++++++----
.../materials/specific/nanocluster-gold.md | 12 +++++++++---
...-film-position-graphene-nickel-interface.md | 16 +++++++++++++---
.../passivation-surface-silicon-surface.md | 15 ++++++++++++---
.../specific/perturbation-ripples-graphene.md | 13 ++++++++++---
.../specific/slab-strontium-titanate.md | 12 +++++++++---
21 files changed, 229 insertions(+), 64 deletions(-)
diff --git a/lang/en/docs/tutorials/materials/specific/defect-point-interstitial-tin-oxide.md b/lang/en/docs/tutorials/materials/specific/defect-point-interstitial-tin-oxide.md
index 3a4f0d51..8577ec96 100644
--- a/lang/en/docs/tutorials/materials/specific/defect-point-interstitial-tin-oxide.md
+++ b/lang/en/docs/tutorials/materials/specific/defect-point-interstitial-tin-oxide.md
@@ -1,4 +1,16 @@
---
+tags:
+ - SnO
+ - defects
+ - interstitial
+ - voronoi
+ - oxygen
+ - point defects
+ - Sn
+ - O
+
+hide:
+ - tags
# YAML header
render_macros: true
---
@@ -152,6 +164,3 @@ To adjust the defect creation:
[DOI: 10.1103/PhysRevB.73.125205](https://doi.org/10.1103/PhysRevB.73.125205){:target='_blank'}.
-## Tags.
-
-`SnO`, `defects`, `interstitial`, `voronoi`, `oxygen`, `point defects`, `Sn`, `O`
diff --git a/lang/en/docs/tutorials/materials/specific/defect-point-pair-gallium-nitride.md b/lang/en/docs/tutorials/materials/specific/defect-point-pair-gallium-nitride.md
index b93f0c32..d417e658 100644
--- a/lang/en/docs/tutorials/materials/specific/defect-point-pair-gallium-nitride.md
+++ b/lang/en/docs/tutorials/materials/specific/defect-point-pair-gallium-nitride.md
@@ -1,4 +1,18 @@
---
+tags:
+ - defects
+ - defect pair
+ - substitutional
+ - vacancy
+ - point defects
+ - impurities
+ - doped semiconductors
+ - nitrogen
+ - GaN
+ - gallium nitride
+
+hide:
+ - tags
# YAML header
render_macros: true
---
@@ -125,6 +139,3 @@ The following JupyterLite notebook demonstrates the process of creating material
"Self-compensation due to point defects in Mg-doped GaN", Physical Review B, 2016.
[DOI: 10.1103/PhysRevB.93.165207](https://journals.aps.org/prb/abstract/10.1103/PhysRevB.93.165207){:target='_blank'}.
-## Tags.
-
-`defects`, `defect pair`, `substitutional`, `vacancy`, `point defects`, `impurities`, `doped semiconductors`, `nitrogen`, `GaN`, `gallium nitride`
diff --git a/lang/en/docs/tutorials/materials/specific/defect-point-substitution-graphene.md b/lang/en/docs/tutorials/materials/specific/defect-point-substitution-graphene.md
index 15b6a97e..85a01ba5 100644
--- a/lang/en/docs/tutorials/materials/specific/defect-point-substitution-graphene.md
+++ b/lang/en/docs/tutorials/materials/specific/defect-point-substitution-graphene.md
@@ -1,4 +1,13 @@
---
+tags:
+ - defects
+ - graphene
+ - substitutional
+ - point-defects
+ - nitrogen
+
+hide:
+ - tags
# YAML header
render_macros: true
---
@@ -139,6 +148,3 @@ The following JupyterLite notebook demonstrates the process of creating material
1. Yoshitaka Fujimoto and Susumu Saito, "Formation, stabilities, and electronic properties of nitrogen defects in graphene", Physical Review B, 2011. [DOI: 10.1103/PhysRevB.84.245446](https://journals.aps.org/prb/abstract/10.1103/PhysRevB.84.245446){:target='_blank'}.
-## Tags.
-
-`defects`, `graphene`, `substitutional`, `point-defects`, `nitrogen`
diff --git a/lang/en/docs/tutorials/materials/specific/defect-point-vacancy-boron-nitride.md b/lang/en/docs/tutorials/materials/specific/defect-point-vacancy-boron-nitride.md
index bbb0d6f2..d3430285 100644
--- a/lang/en/docs/tutorials/materials/specific/defect-point-vacancy-boron-nitride.md
+++ b/lang/en/docs/tutorials/materials/specific/defect-point-vacancy-boron-nitride.md
@@ -1,4 +1,14 @@
---
+tags:
+ - defects
+ - vacancy
+ - point-defects
+ - h-BN
+ - boron-nitride
+ - 2D-materials
+
+hide:
+ - tags
# YAML header
render_macros: true
---
@@ -133,6 +143,3 @@ The following JupyterLite notebooks demonstrate the complete process. Select "Ru
2. Kohan A. F., Ceder G., Morgan D., Van de Walle C. G. (2000). First-principles study of native point defects in h-BN. Physical Review B, 61(23), 15019-15027. [DOI:10.1103/PhysRevB.61.15019](https://doi.org/10.1103/PhysRevB.61.15019){:target='_blank'}.
-## Tags.
-
-`defects`, `vacancy`, `point-defects`, `h-BN`, `boron-nitride`, `2D-materials`
diff --git a/lang/en/docs/tutorials/materials/specific/defect-surface-adatom-graphene.md b/lang/en/docs/tutorials/materials/specific/defect-surface-adatom-graphene.md
index 88a89f63..731af573 100644
--- a/lang/en/docs/tutorials/materials/specific/defect-surface-adatom-graphene.md
+++ b/lang/en/docs/tutorials/materials/specific/defect-surface-adatom-graphene.md
@@ -1,4 +1,13 @@
---
+tags:
+ - adatom
+ - graphene
+ - metal
+ - surface
+ - defect
+
+hide:
+ - tags
# YAML header
render_macros: true
---
@@ -223,6 +232,3 @@ The interactive JupyterLite notebook for creating Graphene structures with metal
1. **Kevin T. Chan, J. B. Neaton, and Marvin L. Cohen**, "First-principles study of metal adatom adsorption on graphene" Phys. Rev. B 77, 235430, 2008 [DOI: 10.1103/PhysRevB.77.235430](https://doi.org/10.1103/PhysRevB.77.235430){:target='_blank'}.
-## Tags.
-
-`adatom`, `graphene`, `metal`, `surface`, `defect`
diff --git a/lang/en/docs/tutorials/materials/specific/defect-surface-island-titanium-nitride.md b/lang/en/docs/tutorials/materials/specific/defect-surface-island-titanium-nitride.md
index d36338af..6a85173f 100644
--- a/lang/en/docs/tutorials/materials/specific/defect-surface-island-titanium-nitride.md
+++ b/lang/en/docs/tutorials/materials/specific/defect-surface-island-titanium-nitride.md
@@ -1,4 +1,15 @@
---
+tags:
+ - defects
+ - island
+ - surface
+ - surface-defects
+ - TiN
+ - nitrogen
+ - titanium
+
+hide:
+ - tags
# YAML header
render_macros: true
---
@@ -176,6 +187,3 @@ The following JupyterLite notebook demonstrates the process of creating material
1. D. G. Sangiovanni, A. B. Mei, D. Edström, L. Hultman, V. Chirita, I. Petrov, and J. E. Greene, "Effects of surface vibrations on interlayer mass transport: Ab initio molecular dynamics investigation of Ti adatom descent pathways and rates from TiN/TiN(001) islands", Physical Review B, 2018. [DOI: 10.1103/PhysRevB.97.035406](https://journals.aps.org/prb/abstract/10.1103/PhysRevB.97.035406){:target='_blank'}.
-## Tags.
-
-`defects`, `island`, `surface`, `surface-defects`, `TiN`, `nitrogen`, `titanium`
diff --git a/lang/en/docs/tutorials/materials/specific/defect-surface-step-platinum.md b/lang/en/docs/tutorials/materials/specific/defect-surface-step-platinum.md
index 3c018b27..bc53250d 100644
--- a/lang/en/docs/tutorials/materials/specific/defect-surface-step-platinum.md
+++ b/lang/en/docs/tutorials/materials/specific/defect-surface-step-platinum.md
@@ -1,4 +1,15 @@
---
+tags:
+ - surface
+ - platinum
+ - terrace
+ - step
+ - slab
+ - Pt(211)
+ - Pt(111)
+
+hide:
+ - tags
# YAML header
render_macros: true
---
@@ -153,6 +164,3 @@ The following JupyterLite notebook demonstrates both approaches. Select "Run" >
1. Šljivančanin, Ž., & Hammer, B., "Oxygen dissociation at close-packed Pt terraces, Pt steps, and Ag-covered Pt steps studied with density functional theory." Surface Science, 515(1), 235–244. [DOI: 10.1016/s0039-6028(02)01908-8](https://doi.org/10.1016/s0039-6028(02)01908-8){:target='_blank'}.
-## Tags.
-
-`surface`, `platinum`, `terrace`, `step`, `slab`, `Pt(211)`, `Pt(111)`
\ No newline at end of file
diff --git a/lang/en/docs/tutorials/materials/specific/defect_point_adatom_island_mos2_pt.md b/lang/en/docs/tutorials/materials/specific/defect_point_adatom_island_mos2_pt.md
index fbf1afab..08aa82f8 100644
--- a/lang/en/docs/tutorials/materials/specific/defect_point_adatom_island_mos2_pt.md
+++ b/lang/en/docs/tutorials/materials/specific/defect_point_adatom_island_mos2_pt.md
@@ -1,4 +1,17 @@
---
+tags:
+ - MoS2
+ - platinum
+ - adatoms
+ - surface science
+ - 2D materials
+ - nanoparticles
+ - Mo
+ - S
+ - Pt
+
+hide:
+ - tags
# YAML header
render_macros: true
---
@@ -176,6 +189,3 @@ To adjust the island structure:
5. Mahbube Hortamani, Peter Kratzer, and Matthias Scheffler, "Density-functional study of Mn monosilicide on the Si(111) surface:
Film formation versus island nucleation", Phys. Rev. B 76, 235426 (2007). [DOI: 10.1103/PhysRevB.76.235426](https://doi.org/10.1103/PhysRevB.76.235426){:target='_blank'}.
-## Tags.
-
-`MoS2`, `platinum`, `adatoms`, `surface science`, `2D materials`, `nanoparticles`, `Mo`, `S`, `Pt`
\ No newline at end of file
diff --git a/lang/en/docs/tutorials/materials/specific/grain-boundary-2d-boron-nitride.md b/lang/en/docs/tutorials/materials/specific/grain-boundary-2d-boron-nitride.md
index 9eee444f..a233fed4 100644
--- a/lang/en/docs/tutorials/materials/specific/grain-boundary-2d-boron-nitride.md
+++ b/lang/en/docs/tutorials/materials/specific/grain-boundary-2d-boron-nitride.md
@@ -1,4 +1,14 @@
---
+tags:
+ - grain-boundary
+ - h-BN
+ - 2D-materials
+ - interface
+ - twist-angle
+ - atom-restoration
+
+hide:
+ - tags
# YAML header
render_macros: true
---
@@ -142,6 +152,3 @@ The following JupyterLite notebook demonstrates the complete process. Select "Ru
1. Qiucheng Li, et al., "Grain Boundary Structures and Electronic Properties of Hexagonal Boron Nitride on Cu(111)", ACS Nano 2015 9 (6), 6308-6315. [DOI: 10.1021/acs.nanolett.5b01852](https://doi.org/10.1021/acs.nanolett.5b01852)
-## Tags.
-
-`grain-boundary`, `h-BN`, `2D-materials`, `interface`, `twist-angle`, `atom-restoration`
diff --git a/lang/en/docs/tutorials/materials/specific/grain-boundary-3d-fcc-metals-copper.md b/lang/en/docs/tutorials/materials/specific/grain-boundary-3d-fcc-metals-copper.md
index b7d22729..5e9fb929 100644
--- a/lang/en/docs/tutorials/materials/specific/grain-boundary-3d-fcc-metals-copper.md
+++ b/lang/en/docs/tutorials/materials/specific/grain-boundary-3d-fcc-metals-copper.md
@@ -1,4 +1,14 @@
---
+tags:
+ - grain boundary
+ - interface
+ - copper
+ - Cu
+ - FCC
+ - metal
+
+hide:
+ - tags
# YAML header
render_macros: true
---
@@ -138,6 +148,3 @@ The following JupyterLite notebook demonstrates the complete process. Select "Ru
1. Timofey Frolov, David L. Olmsted, Mark Asta & Yuri Mishin, "Structural phase transformations in metallic grain boundaries", Nature Communications, volume 4, Article number: 1899 (2013). [DOI: 10.1038/ncomms2919](https://www.nature.com/articles/ncomms2919)
-## Tags.
-
-`grain boundary`, `interface`, `copper`, `Cu`, `FCC`, `metal`
diff --git a/lang/en/docs/tutorials/materials/specific/heterostructure-silicon-silicon-dioxide-hafnium-dioxide-titanium-nitride.md b/lang/en/docs/tutorials/materials/specific/heterostructure-silicon-silicon-dioxide-hafnium-dioxide-titanium-nitride.md
index 5c477b0d..3673e695 100644
--- a/lang/en/docs/tutorials/materials/specific/heterostructure-silicon-silicon-dioxide-hafnium-dioxide-titanium-nitride.md
+++ b/lang/en/docs/tutorials/materials/specific/heterostructure-silicon-silicon-dioxide-hafnium-dioxide-titanium-nitride.md
@@ -1,4 +1,19 @@
---
+tags:
+ - slab-creation
+ - interfaces
+ - high-k
+ - metal-gate
+ - semiconductor
+ - heterostructure
+ - strain-matching
+ - Si
+ - SiO2
+ - HfO2
+ - TiN
+
+hide:
+ - tags
# YAML header
render_macros: true
---
@@ -200,6 +215,3 @@ The following JupyterLite notebook demonstrates the process of creating target m
Reports on Progress in Physics 69, 327 (2006)
[DOI: 10.1088/0034-4885/69/2/R02](https://doi.org/10.1088/0034-4885/69/2/R02)
-## Tags.
-
-`slab-creation`, `interfaces`, `high-k`, `metal-gate`, `semiconductor`, `heterostructure`, `strain-matching`, `Si`, `SiO2`, `HfO2`, `TiN`
diff --git a/lang/en/docs/tutorials/materials/specific/interface-2d-2d-graphene-boron-nitride.md b/lang/en/docs/tutorials/materials/specific/interface-2d-2d-graphene-boron-nitride.md
index 2204d60b..d2df14c0 100644
--- a/lang/en/docs/tutorials/materials/specific/interface-2d-2d-graphene-boron-nitride.md
+++ b/lang/en/docs/tutorials/materials/specific/interface-2d-2d-graphene-boron-nitride.md
@@ -1,4 +1,13 @@
---
+tags:
+ - 2D
+ - Graphene
+ - Hexagonal Boron Nitride
+ - interface
+ - stacking
+
+hide:
+ - tags
# YAML header
render_macros: true
---
@@ -169,6 +178,3 @@ The interactive JupyterLite notebook for creating Gr/h-BN interface can be acces
RSC Adv., 2024, 4, 1-10
[DOI: 10.1039/D3RA06559F](https://doi.org/10.1039/D3RA06559F)
-## Tags.
-
-`2D`, `Graphene`, `Hexagonal Boron Nitride`, `interface`, `stacking`
diff --git a/lang/en/docs/tutorials/materials/specific/interface-2d-3d-graphene-silicon-dioxide.md b/lang/en/docs/tutorials/materials/specific/interface-2d-3d-graphene-silicon-dioxide.md
index f36440c3..ba42d61c 100644
--- a/lang/en/docs/tutorials/materials/specific/interface-2d-3d-graphene-silicon-dioxide.md
+++ b/lang/en/docs/tutorials/materials/specific/interface-2d-3d-graphene-silicon-dioxide.md
@@ -1,4 +1,15 @@
---
+tags:
+ - graphene
+ - silicon dioxide
+ - interface
+ - 2D
+ - 3D
+ - oxygen
+ - termination
+
+hide:
+ - tags
# YAML header
render_macros: true
---
@@ -129,6 +140,3 @@ The interactive JupyterLite notebook for creating interfaces between graphene an
Nanoscale 6, 2548-2562 (2014)
[DOI: 10.1039/C3NR05279F](https://doi.org/10.1039/C3NR05279F)
-## Tags.
-
-`graphene`, `silicon dioxide`, `interface`, `2D`,`3D`, `oxygen`, `termination`
diff --git a/lang/en/docs/tutorials/materials/specific/interface-3d-3d-copper-silicon-dioxide.md b/lang/en/docs/tutorials/materials/specific/interface-3d-3d-copper-silicon-dioxide.md
index 891ecd7b..a0355190 100644
--- a/lang/en/docs/tutorials/materials/specific/interface-3d-3d-copper-silicon-dioxide.md
+++ b/lang/en/docs/tutorials/materials/specific/interface-3d-3d-copper-silicon-dioxide.md
@@ -1,4 +1,15 @@
---
+tags:
+ - 3D
+ - copper
+ - cristobalite
+ - interface
+ - termination
+ - SiO2
+ - Cu
+
+hide:
+ - tags
# YAML header
render_macros: true
---
@@ -136,6 +147,3 @@ The interactive JupyterLite notebook for creating interfaces between Copper and
Molecular dynamics study of the adhesion of Cu/SiO2interfaces using a variable-charge interatomic potential. Physical Review B, 83(11).
[DOI: 10.1103/PhysRevB.83.115327](https://doi.org/10.1103/PhysRevB.83.115327)
-## Tags.
-
-`3D`, `copper`, `cristobalite`, `interface`, `termination`, `SiO2`, `Cu`
diff --git a/lang/en/docs/tutorials/materials/specific/interface-bilayer-twisted-commensurate-lattices-molybdenum-disulfide.md b/lang/en/docs/tutorials/materials/specific/interface-bilayer-twisted-commensurate-lattices-molybdenum-disulfide.md
index 5160f9ee..22833520 100644
--- a/lang/en/docs/tutorials/materials/specific/interface-bilayer-twisted-commensurate-lattices-molybdenum-disulfide.md
+++ b/lang/en/docs/tutorials/materials/specific/interface-bilayer-twisted-commensurate-lattices-molybdenum-disulfide.md
@@ -1,4 +1,15 @@
---
+tags:
+ - 2d-materials
+ - layers
+ - bilayer
+ - twisted
+ - commensurate
+ - molybdenum
+ - disulfide
+
+hide:
+ - tags
# YAML header
render_macros: true
---
@@ -146,6 +157,3 @@ The interactive JupyterLite notebook for creating twisted bilayer MoS2 structure
1. Kaihui Liu, Liming Zhang, Ting Cao, Chenhao Jin, Diana Qiu, Qin Zhou, Alex Zettl, Peidong Yang, Steve G. Louie & Feng Wang, "Evolution of interlayer coupling in twisted molybdenum disulfide bilayers" Nature Communications volume 5, Article number: 4966 (2014) [DOI: 10.1038/ncomms5966](https://doi.org/10.1038/ncomms5966)
2. Cao, Y., Fatemi, V., Fang, S. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018). [DOI: 10.1038/nature26160](https://doi.org/10.1038/nature26160)
-## Tags.
-
-`2d-materials`, `layers`, `bilayer`, `twisted`, `commensurate`, `molybdenum`, `disulfide`
diff --git a/lang/en/docs/tutorials/materials/specific/interface-bilayer-twisted-nanoribbons-boron-nitride.md b/lang/en/docs/tutorials/materials/specific/interface-bilayer-twisted-nanoribbons-boron-nitride.md
index db1016fc..4fbc2335 100644
--- a/lang/en/docs/tutorials/materials/specific/interface-bilayer-twisted-nanoribbons-boron-nitride.md
+++ b/lang/en/docs/tutorials/materials/specific/interface-bilayer-twisted-nanoribbons-boron-nitride.md
@@ -1,4 +1,14 @@
---
+tags:
+ - twisted-bilayer
+ - nanoribbons
+ - boron-nitride
+ - BN
+ - boron
+ - nitrogen
+
+hide:
+ - tags
# YAML header
render_macros: true
---
@@ -116,7 +126,3 @@ The interactive JupyterLite notebook for creating the twisted bilayer boron nitr
1. **Lede Xian, Dante M. Kennes, Nicolas Tancogne-Dejean, Massimo Altarelli, and Angel Rubio**,
"Multiflat Bands and Strong Correlations in Twisted Bilayer Boron Nitride: Doping-Induced Correlated Insulator and Superconductor" Phys. Rev. Lett. 125, 086402 – Published 20 August 2020 DOI: 10.1021/acs.nanolett.9b00986
-## Tags.
-
-`twisted-bilayer`,`nanoribbons`, `boron-nitride`, `BN`, `boron`, `nitrogen`
-
diff --git a/lang/en/docs/tutorials/materials/specific/nanocluster-gold.md b/lang/en/docs/tutorials/materials/specific/nanocluster-gold.md
index 9a829660..de41190c 100644
--- a/lang/en/docs/tutorials/materials/specific/nanocluster-gold.md
+++ b/lang/en/docs/tutorials/materials/specific/nanocluster-gold.md
@@ -1,4 +1,13 @@
---
+tags:
+ - gold
+ - cluster
+ - nanoparticle
+ - cuboctahedron
+ - icosahedron
+
+hide:
+ - tags
# YAML header
render_macros: true
---
@@ -166,6 +175,3 @@ The interactive JupyterLite notebook for creating Gold Nanoclusters can be acces
[DOI: 10.1103/PhysRevB.84.245429](https://doi.org/10.1103/PhysRevB.84.245429){:target='_blank'}.
-## Tags.
-
-`gold`, `cluster`, `nanoparticle`, `cuboctahedron`, `icosahedron`
\ No newline at end of file
diff --git a/lang/en/docs/tutorials/materials/specific/optimize-film-position-graphene-nickel-interface.md b/lang/en/docs/tutorials/materials/specific/optimize-film-position-graphene-nickel-interface.md
index 7567f060..a99137a2 100644
--- a/lang/en/docs/tutorials/materials/specific/optimize-film-position-graphene-nickel-interface.md
+++ b/lang/en/docs/tutorials/materials/specific/optimize-film-position-graphene-nickel-interface.md
@@ -1,4 +1,17 @@
---
+tags:
+ - graphene
+ - nickel
+ - interface
+ - optimization
+ - 2D materials
+ - surface science
+ - Gr/Ni(111)
+ - C
+ - Ni
+
+hide:
+ - tags
# YAML header
render_macros: true
---
@@ -155,6 +168,3 @@ To adjust the interface optimization:
3. Bertoni, G., Calmels, L., Altibelli, A., & Serin, V. (2004). First-principles calculation of the electronic structure and EELS spectra at the graphene/Ni(111) interface. Physical Review B, 71(7). [DOI: 10.1103/PhysRevB.71.075402](https://journals.aps.org/prb/abstract/10.1103/PhysRevB.71.075402)
-## Tags.
-
-`graphene`, `nickel`, `interface`, `optimization`, `2D materials`, `surface science`, `Gr/Ni(111)`, `C`, `Ni`
diff --git a/lang/en/docs/tutorials/materials/specific/passivation-surface-silicon-surface.md b/lang/en/docs/tutorials/materials/specific/passivation-surface-silicon-surface.md
index e7b8e70e..a0af1aae 100644
--- a/lang/en/docs/tutorials/materials/specific/passivation-surface-silicon-surface.md
+++ b/lang/en/docs/tutorials/materials/specific/passivation-surface-silicon-surface.md
@@ -1,4 +1,16 @@
---
+tags:
+ - silicon
+ - surface
+ - passivation
+ - hydrogen
+ - Si(100)
+ - surface reconstruction
+ - Si
+ - H
+
+hide:
+ - tags
# YAML header
render_macros: true
---
@@ -180,6 +192,3 @@ To adjust the passivation:
3. Boland, J. J. (1990). Structure of the H‐saturated Si(100) surface. Physical Review Letters, 65(26), 3325–3328.
-## Tags.
-
-`silicon`, `surface`, `passivation`, `hydrogen`, `Si(100)`, `surface reconstruction`, `Si`, `H`
\ No newline at end of file
diff --git a/lang/en/docs/tutorials/materials/specific/perturbation-ripples-graphene.md b/lang/en/docs/tutorials/materials/specific/perturbation-ripples-graphene.md
index 691af053..67f08893 100644
--- a/lang/en/docs/tutorials/materials/specific/perturbation-ripples-graphene.md
+++ b/lang/en/docs/tutorials/materials/specific/perturbation-ripples-graphene.md
@@ -1,4 +1,14 @@
---
+tags:
+ - graphene
+ - ripples
+ - perturbation
+ - 2D materials
+ - edge effects
+ - C
+
+hide:
+ - tags
# YAML header
render_macros: true
---
@@ -181,6 +191,3 @@ If user need to adjust the ripple pattern, user can modify these key parameters:
3. L. A. Openov & A. I. Podlivaev, "Interaction of the Stone-Wales defects in graphene", Physics of the Solid State, 52, 1, 2010. [DOI: 10.1134/S1063783415070240](https://doi.org/10.1134/S1063783415070240)
-## Tags.
-
-`graphene`, `ripples`, `perturbation`, `2D materials`, `edge effects`, `C`
\ No newline at end of file
diff --git a/lang/en/docs/tutorials/materials/specific/slab-strontium-titanate.md b/lang/en/docs/tutorials/materials/specific/slab-strontium-titanate.md
index ea0f511a..f76d4d9a 100644
--- a/lang/en/docs/tutorials/materials/specific/slab-strontium-titanate.md
+++ b/lang/en/docs/tutorials/materials/specific/slab-strontium-titanate.md
@@ -1,4 +1,13 @@
---
+tags:
+ - slab
+ - strontium titanate
+ - SrTiO3
+ - terminations
+ - surface
+
+hide:
+ - tags
# YAML header
render_macros: true
---
@@ -133,6 +142,3 @@ The following JupyterLite notebook demonstrates the process of creating strontiu
2. Atashi B. Mukhopadhyay, Javier F. Sanz, and Charles B. Musgrave "First-principles calculations of structural and electronic properties of monoclinic hafnia surfaces", Phys. Rev. B 73, 115330 (2006) DOI: [10.1103/PhysRevB.73.115330](https://doi.org/10.1103/PhysRevB.73.115330)
-## Tags.
-
-`slab`, `strontium titanate`, `SrTiO3`, `terminations`, `surface`
From 748916ad02343c93e3e6d8b5de92b77c209e5bda Mon Sep 17 00:00:00 2001
From: VsevolodX <79542055+VsevolodX@users.noreply.github.com>
Date: Fri, 3 Jan 2025 16:43:06 -0800
Subject: [PATCH 04/20] update: add bibtex plugin
---
mkdocs.yml | 4 ++++
requirements.txt | 1 +
2 files changed, 5 insertions(+)
diff --git a/mkdocs.yml b/mkdocs.yml
index 05a44be1..c516086e 100644
--- a/mkdocs.yml
+++ b/mkdocs.yml
@@ -114,6 +114,10 @@ plugins:
include_dir: "lang/en/docs/includes/"
render_by_default: false
# add header from https://mkdocs-macros-plugin.readthedocs.io/en/stable/rendering/#opt-in-through-the-config-file to enable in the specific markdown
+ - bibtex:
+ bib_file: "lang/en/docs/includes/references.bib"
+ citation_template: "{{author}} ({{year}})"
+ bibliography_template: "{{author}} ({{year}}). {{title}}. {{journal}}. {{volume}}. {{pages}}."
nav:
- Home: index.md
diff --git a/requirements.txt b/requirements.txt
index c985e928..3361a2ee 100644
--- a/requirements.txt
+++ b/requirements.txt
@@ -25,6 +25,7 @@ importlib_metadata==8.5.0
Jinja2==3.1.4
livereload==2.6.3
mkdocs-macros-plugin==1.2.0
+mkdocs-bibtex==2.16.2
Markdown==3.7
MarkupSafe==2.1.5
mergedeep==1.3.4
From 110ad6a05215848182576874f776d038c3529219 Mon Sep 17 00:00:00 2001
From: VsevolodX <79542055+VsevolodX@users.noreply.github.com>
Date: Fri, 3 Jan 2025 16:43:22 -0800
Subject: [PATCH 05/20] feat: add bibtex file
---
lang/en/docs/includes/references.bib | 33 ++++++++++++++++++++++++++++
1 file changed, 33 insertions(+)
create mode 100644 lang/en/docs/includes/references.bib
diff --git a/lang/en/docs/includes/references.bib b/lang/en/docs/includes/references.bib
new file mode 100644
index 00000000..1f923de5
--- /dev/null
+++ b/lang/en/docs/includes/references.bib
@@ -0,0 +1,33 @@
+@article{Togo2006,
+ title={First-principles calculations of native defects in tin monoxide},
+ author={Togo, A. and Oba, F. and Tanaka, I.},
+ journal={Physical Review B},
+ volume={74},
+ number={19},
+ pages={195128},
+ year={2006},
+ doi={10.1103/PhysRevB.74.195128},
+ url={https://doi.org/10.1103/PhysRevB.74.195128}
+}
+
+@article{Wang2014,
+ title={Carbon related defects in irradiated silicon revisited},
+ author={Wang, H. and Chroneos, A. and Londos, C. A. and Sgourou, E. N. and Schwingenschlögl, U.},
+ journal={Scientific Reports},
+ volume={4},
+ pages={4909},
+ year={2014},
+ doi={10.1038/srep04909},
+ url={https://doi.org/10.1038/srep04909}
+}
+
+@article{Na-Phattalung2006,
+ title={First-principles study of native defects in anatase TiO2},
+ author={Na-Phattalung, Sutassana and Smith, M. F. and Kim, Kwiseon and Du, Mao-Hua and Wei, Su-Huai and Zhang, S. B. and Limpijumnong, Sukit},
+ journal={Physical Review B},
+ volume={73},
+ pages={125205},
+ year={2006},
+ doi={10.1103/PhysRevB.73.125205},
+ url={https://doi.org/10.1103/PhysRevB.73.125205}
+}
\ No newline at end of file
From c99c551a89ec849041e55e4b9faeccc5362be212 Mon Sep 17 00:00:00 2001
From: VsevolodX <79542055+VsevolodX@users.noreply.github.com>
Date: Fri, 3 Jan 2025 16:43:42 -0800
Subject: [PATCH 06/20] update: add bibtex references 1
---
.../specific/defect-point-interstitial-tin-oxide.md | 10 +---------
1 file changed, 1 insertion(+), 9 deletions(-)
diff --git a/lang/en/docs/tutorials/materials/specific/defect-point-interstitial-tin-oxide.md b/lang/en/docs/tutorials/materials/specific/defect-point-interstitial-tin-oxide.md
index 8577ec96..fe617ec6 100644
--- a/lang/en/docs/tutorials/materials/specific/defect-point-interstitial-tin-oxide.md
+++ b/lang/en/docs/tutorials/materials/specific/defect-point-interstitial-tin-oxide.md
@@ -155,12 +155,4 @@ To adjust the defect creation:
## References.
-1. Togo, A., Oba, F., & Tanaka, I. (2006). First-principles calculations of native defects in tin monoxide. Physical Review B, 74(19), 195128. [DOI: 10.1103/PhysRevB.74.195128](https://doi.org/10.1103/PhysRevB.74.195128){:target='_blank'}.
-
-2. H. Wang, A. Chroneos, C. A. Londos, E. N. Sgourou & U. Schwingenschlögl, "Carbon related defects in irradiated silicon revisited" Scientific Reports 4, 4909 (2014).
- [DOI: 10.1038/srep04909](https://doi.org/10.1038/srep04909){:target='_blank'}.
-
-3. Sutassana Na-Phattalung, M. F. Smith, Kwiseon Kim, Mao-Hua Du, Su-Huai Wei, S. B. Zhang, and Sukit Limpijumnong, "First-principles study of native defects in anatase TiO2", Phys. Rev. B 73, 125205 (2006).
- [DOI: 10.1103/PhysRevB.73.125205](https://doi.org/10.1103/PhysRevB.73.125205){:target='_blank'}.
-
-
+Cite the following works: [@Togo2006], [@Wang2014], and [@Na-Phattalung2006].
From 31605feb06185c65b38e6f306ba051f2120e14aa Mon Sep 17 00:00:00 2001
From: VsevolodX <79542055+VsevolodX@users.noreply.github.com>
Date: Fri, 3 Jan 2025 18:02:06 -0800
Subject: [PATCH 07/20] update: add bibtex references 2
---
lang/en/docs/includes/references.bib | 172 ++++++++++++++++++
.../defect-point-pair-gallium-nitride.md | 5 +-
.../defect-point-substitution-graphene.md | 4 +-
.../defect-point-vacancy-boron-nitride.md | 4 +-
.../defect-surface-adatom-graphene.md | 3 +-
.../defect-surface-island-titanium-nitride.md | 3 +-
.../specific/defect-surface-step-platinum.md | 3 +-
.../defect_point_adatom_island_mos2_pt.md | 11 +-
.../grain-boundary-2d-boron-nitride.md | 3 +-
.../grain-boundary-3d-fcc-metals-copper.md | 3 +-
...nterface-2d-3d-graphene-silicon-dioxide.md | 12 +-
11 files changed, 182 insertions(+), 41 deletions(-)
diff --git a/lang/en/docs/includes/references.bib b/lang/en/docs/includes/references.bib
index 1f923de5..dd1881fb 100644
--- a/lang/en/docs/includes/references.bib
+++ b/lang/en/docs/includes/references.bib
@@ -30,4 +30,176 @@ @article{Na-Phattalung2006
year={2006},
doi={10.1103/PhysRevB.73.125205},
url={https://doi.org/10.1103/PhysRevB.73.125205}
+}
+
+@article{Kang2008,
+ title = {Electronic structure of graphene and doping effect on SiO2},
+ author = {Kang, Yong-Ju and Kang, Joongoo and Chang, K. J.},
+ journal = {Physical Review B},
+ volume = {78},
+ pages = {115404},
+ year = {2008},
+ doi = {10.1103/PhysRevB.78.115404},
+}
+
+@article{Dahal2014,
+ title = {Graphene–nickel interfaces: a review},
+ author = {Dahal, Arjun and Batzill, Matthias},
+ journal = {Nanoscale},
+ volume = {6},
+ pages = {2548-2562},
+ year = {2014},
+ doi = {10.1039/C3NR05279F},
+}
+
+@article{Miceli2016,
+ title = {Self-compensation due to point defects in Mg-doped GaN},
+ author = {Miceli, Giacomo and Pasquarello, Alfredo},
+ journal = {Physical Review B},
+ volume = {93},
+ pages = {165207},
+ year = {2016},
+ doi = {10.1103/PhysRevB.93.165207},
+}
+
+@article{Yoshitaka2011,
+ title = {Formation, stabilities, and electronic properties of nitrogen defects in graphene},
+ author = {Fujimoto, Yoshitaka and Saito, Susumu},
+ journal = {Phys. Rev. B},
+ volume = {84},
+ issue = {24},
+ pages = {245446},
+ numpages = {9},
+ year = {2011},
+ month = {Dec},
+ publisher = {American Physical Society},
+ doi = {10.1103/PhysRevB.84.245446},
+ url = {https://link.aps.org/doi/10.1103/PhysRevB.84.245446}
+}
+
+@article{Bertoldo2022,
+ title = {Quantum point defects in 2D materials - the QPOD database},
+ author = {Bertoldo, Fabian and Ali, Sajid and Manti, Simone and Thygesen, Kristian S.},
+ journal = {Nature},
+ year = {2022},
+ doi = {10.1038/s41524-022-00730-w}
+}
+
+@article{Kohan2000,
+ title = {First-principles study of native point defects in h-BN},
+ author = {Kohan, A. F. and Ceder, G. and Morgan, D. and Van de Walle, C. G.},
+ journal = {Physical Review B},
+ volume = {61},
+ number = {23},
+ pages = {15019-15027},
+ year = {2000},
+ doi = {10.1103/PhysRevB.61.15019}
+}
+
+@article{Chan2008,
+ title = {First-principles study of metal adatom adsorption on graphene},
+ author = {Chan, Kevin T. and Neaton, J. B. and Cohen, Marvin L.},
+ journal = {Phys. Rev. B},
+ volume = {77},
+ pages = {235430},
+ year = {2008},
+ doi = {10.1103/PhysRevB.77.235430},
+}
+
+@article{Sangiovanni2018,
+ title={Effects of surface vibrations on interlayer mass transport: Ab initio molecular dynamics investigation of Ti adatom descent pathways and rates from TiN/TiN(001) islands},
+ author={Sangiovanni, D. G. and Mei, A. B. and Edström, D. and Hultman, L. and Chirita, V. and Petrov, I. and Greene, J. E.},
+ journal={Physical Review B},
+ volume={97},
+ pages={035406},
+ year={2018},
+ publisher={APS}
+}
+
+@article{Sljivancanin2002,
+ doi = {10.1016/s0039-6028(02)01908-8},
+ url = {https://doi.org/10.1016/s0039-6028(02)01908-8},
+ year = {2002},
+ publisher = {Elsevier {BV}},
+ volume = {515},
+ number = {1},
+ pages = {235--244},
+ author = {Z. Šljivančanin and B. Hammer},
+ title = {Oxygen dissociation at close-packed {Pt} terraces, {Pt} steps, and {Ag}-covered {Pt} steps studied with density functional theory},
+ journal = {Surface Science}
+}
+
+@article{Saidi2015,
+ title = {Density Functional Theory Study of Nucleation and Growth of Pt Nanoparticles on MoS2(001) Surface},
+ author = {Saidi, W. A.},
+ journal = {Crystal Growth & Design},
+ volume = {15},
+ number = {2},
+ pages = {642–652},
+ year = {2015},
+ doi = {10.1021/cg5013395}
+}
+
+@article{Jiao2016,
+ title = {QM/MD studies on graphene growth from small islands on the Ni(111) surface},
+ author = {Jiao, M. and Song, W. and Qian, H.-J. and Wang, Y. and Wu, Z. and Irle, S. and Morokuma, K.},
+ journal = {Nanoscale},
+ volume = {8},
+ number = {5},
+ pages = {3067–3074},
+ year = {2016},
+ doi = {10.1039/c5nr07680c}
+}
+
+@article{Fichthorn2000,
+ title = {Island Nucleation in Thin-Film Epitaxy: A First-Principles Investigation},
+ author = {Kristen A. Fichthorn and Matthias Scheffler},
+ journal = {Phys. Rev. Lett.},
+ volume = {84},
+ pages = {5371},
+ year = {2000},
+ doi = {10.1103/PhysRevLett.84.5371}
+}
+
+@article{Neugebauer1993,
+ title = {Mechanisms of island formation of alkali-metal adsorbates on Al(111)},
+ author = {Jörg Neugebauer and Matthias Scheffler},
+ journal = {Phys. Rev. Lett.},
+ volume = {71},
+ pages = {577},
+ year = {1993},
+ doi = {10.1103/PhysRevLett.71.577}
+}
+
+@article{Hortamani2007,
+ title = {Density-functional study of Mn monosilicide on the Si(111) surface: Film formation versus island nucleation},
+ author = {Mahbube Hortamani and Peter Kratzer and Matthias Scheffler},
+ journal = {Phys. Rev. B},
+ volume = {76},
+ pages = {235426},
+ year = {2007},
+ doi = {10.1103/PhysRevB.76.235426}
+}
+
+@article{Li2015,
+ doi = {10.1021/acs.nanolett.5b01852},
+ url = {https://doi.org/10.1021/acs.nanolett.5b01852},
+ year = {2015},
+ publisher = {American Chemical Society ({ACS})},
+ volume = {9},
+ number = {6},
+ pages = {6308--6315},
+ author = {Qiucheng Li and Xiaolong Zou and Mengxi Liu and Jingyu Sun and Yabo Gao and Yue Qi and Xiebo Zhou and Boris I. Yakobson and Yanfeng Zhang and Zhongfan Liu},
+ title = {Grain Boundary Structures and Electronic Properties of Hexagonal Boron Nitride on Cu(111)},
+ journal = {{ACS} Nano}
+}
+
+@article{Frolov2013,
+ title={Structural phase transformations in metallic grain boundaries},
+ author={Frolov, Timofey and Olmsted, David L and Asta, Mark and Mishin, Yuri},
+ journal={Nature Communications},
+ volume={4},
+ pages={1899},
+ year={2013},
+ publisher={Nature Publishing Group}
}
\ No newline at end of file
diff --git a/lang/en/docs/tutorials/materials/specific/defect-point-pair-gallium-nitride.md b/lang/en/docs/tutorials/materials/specific/defect-point-pair-gallium-nitride.md
index d417e658..5e58e9ff 100644
--- a/lang/en/docs/tutorials/materials/specific/defect-point-pair-gallium-nitride.md
+++ b/lang/en/docs/tutorials/materials/specific/defect-point-pair-gallium-nitride.md
@@ -135,7 +135,4 @@ The following JupyterLite notebook demonstrates the process of creating material
## References.
-1. **Giacomo Miceli, Alfredo Pasquarello**,
- "Self-compensation due to point defects in Mg-doped GaN", Physical Review B, 2016.
- [DOI: 10.1103/PhysRevB.93.165207](https://journals.aps.org/prb/abstract/10.1103/PhysRevB.93.165207){:target='_blank'}.
-
+Cite the following works: [@Miceli2016]
diff --git a/lang/en/docs/tutorials/materials/specific/defect-point-substitution-graphene.md b/lang/en/docs/tutorials/materials/specific/defect-point-substitution-graphene.md
index 85a01ba5..76e562ef 100644
--- a/lang/en/docs/tutorials/materials/specific/defect-point-substitution-graphene.md
+++ b/lang/en/docs/tutorials/materials/specific/defect-point-substitution-graphene.md
@@ -145,6 +145,4 @@ The following JupyterLite notebook demonstrates the process of creating material
## References.
-1. Yoshitaka Fujimoto and Susumu Saito, "Formation, stabilities, and electronic properties of nitrogen defects in graphene", Physical Review B, 2011. [DOI: 10.1103/PhysRevB.84.245446](https://journals.aps.org/prb/abstract/10.1103/PhysRevB.84.245446){:target='_blank'}.
-
-
+Cite the following works: [@Yoshitaka2011]
diff --git a/lang/en/docs/tutorials/materials/specific/defect-point-vacancy-boron-nitride.md b/lang/en/docs/tutorials/materials/specific/defect-point-vacancy-boron-nitride.md
index d3430285..4cdb2ea3 100644
--- a/lang/en/docs/tutorials/materials/specific/defect-point-vacancy-boron-nitride.md
+++ b/lang/en/docs/tutorials/materials/specific/defect-point-vacancy-boron-nitride.md
@@ -139,7 +139,5 @@ The following JupyterLite notebooks demonstrate the complete process. Select "Ru
## References.
-1. Fabian Bertoldo, Sajid Ali, Simone Manti & Kristian S. Thygesen, "Quantum point defects in 2D materials - the QPOD database", Nature, 2022. [DOI:10.1038/s41524-022-00730-w](https://doi.org/10.1038/s41524-022-00730-w){:target='_blank'}.
-
-2. Kohan A. F., Ceder G., Morgan D., Van de Walle C. G. (2000). First-principles study of native point defects in h-BN. Physical Review B, 61(23), 15019-15027. [DOI:10.1103/PhysRevB.61.15019](https://doi.org/10.1103/PhysRevB.61.15019){:target='_blank'}.
+Cite the following works: [@Bertoldo2022; @Kohan2000]
diff --git a/lang/en/docs/tutorials/materials/specific/defect-surface-adatom-graphene.md b/lang/en/docs/tutorials/materials/specific/defect-surface-adatom-graphene.md
index 731af573..1ab9e8ed 100644
--- a/lang/en/docs/tutorials/materials/specific/defect-surface-adatom-graphene.md
+++ b/lang/en/docs/tutorials/materials/specific/defect-surface-adatom-graphene.md
@@ -230,5 +230,4 @@ The interactive JupyterLite notebook for creating Graphene structures with metal
## References.
-1. **Kevin T. Chan, J. B. Neaton, and Marvin L. Cohen**, "First-principles study of metal adatom adsorption on graphene" Phys. Rev. B 77, 235430, 2008 [DOI: 10.1103/PhysRevB.77.235430](https://doi.org/10.1103/PhysRevB.77.235430){:target='_blank'}.
-
+Cite the following works: [@Chan2008]
diff --git a/lang/en/docs/tutorials/materials/specific/defect-surface-island-titanium-nitride.md b/lang/en/docs/tutorials/materials/specific/defect-surface-island-titanium-nitride.md
index 6a85173f..1d0ed7e1 100644
--- a/lang/en/docs/tutorials/materials/specific/defect-surface-island-titanium-nitride.md
+++ b/lang/en/docs/tutorials/materials/specific/defect-surface-island-titanium-nitride.md
@@ -185,5 +185,4 @@ The following JupyterLite notebook demonstrates the process of creating material
## References.
-1. D. G. Sangiovanni, A. B. Mei, D. Edström, L. Hultman, V. Chirita, I. Petrov, and J. E. Greene, "Effects of surface vibrations on interlayer mass transport: Ab initio molecular dynamics investigation of Ti adatom descent pathways and rates from TiN/TiN(001) islands", Physical Review B, 2018. [DOI: 10.1103/PhysRevB.97.035406](https://journals.aps.org/prb/abstract/10.1103/PhysRevB.97.035406){:target='_blank'}.
-
+Cite the following work: [@Sangiovanni2018]
diff --git a/lang/en/docs/tutorials/materials/specific/defect-surface-step-platinum.md b/lang/en/docs/tutorials/materials/specific/defect-surface-step-platinum.md
index bc53250d..06756824 100644
--- a/lang/en/docs/tutorials/materials/specific/defect-surface-step-platinum.md
+++ b/lang/en/docs/tutorials/materials/specific/defect-surface-step-platinum.md
@@ -162,5 +162,4 @@ The following JupyterLite notebook demonstrates both approaches. Select "Run" >
## References.
-1. Šljivančanin, Ž., & Hammer, B., "Oxygen dissociation at close-packed Pt terraces, Pt steps, and Ag-covered Pt steps studied with density functional theory." Surface Science, 515(1), 235–244. [DOI: 10.1016/s0039-6028(02)01908-8](https://doi.org/10.1016/s0039-6028(02)01908-8){:target='_blank'}.
-
+Cite the following work: [@Sljivancanin2002]
diff --git a/lang/en/docs/tutorials/materials/specific/defect_point_adatom_island_mos2_pt.md b/lang/en/docs/tutorials/materials/specific/defect_point_adatom_island_mos2_pt.md
index 08aa82f8..52849214 100644
--- a/lang/en/docs/tutorials/materials/specific/defect_point_adatom_island_mos2_pt.md
+++ b/lang/en/docs/tutorials/materials/specific/defect_point_adatom_island_mos2_pt.md
@@ -178,14 +178,5 @@ To adjust the island structure:
## References.
-1. Saidi, W. A. (2015). Density Functional Theory Study of Nucleation and Growth of Pt Nanoparticles on MoS2(001) Surface. Crystal Growth & Design, 15(2), 642–652. [DOI: 10.1021/cg5013395](https://doi.org/10.1021/cg5013395){:target='_blank'}.
-
-2. Jiao, M., Song, W., Qian, H.-J., Wang, Y., Wu, Z., Irle, S., & Morokuma, K. (2016). QM/MD studies on graphene growth from small islands on the Ni(111) surface. Nanoscale, 8(5), 3067–3074. doi:10.1039/c5nr07680c [DOI: 10.1039/c5nr07680c](https://doi.org/10.1039/c5nr07680c){:target='_blank'}.
-
-3. Kristen A. Fichthorn and Matthias Scheffler, "Island Nucleation in Thin-Film Epitaxy: A First-Principles Investigation", Phys. Rev. Lett. 84, 5371 (2000). [DOI: 10.1103/PhysRevLett.84.5371](https://doi.org/10.1103/PhysRevLett.84.5371){:target='_blank'}.
-
-4. Jörg Neugebauer and Matthias Scheffler, "Mechanisms of island formation of alkali-metal adsorbates on Al(111)", Phys. Rev. Lett. 71, 577 (1993). [DOI: 10.1103/PhysRevLett.71.577](https://doi.org/10.1103/PhysRevLett.71.577){:target='_blank'}.
-
-5. Mahbube Hortamani, Peter Kratzer, and Matthias Scheffler, "Density-functional study of Mn monosilicide on the Si(111) surface:
-Film formation versus island nucleation", Phys. Rev. B 76, 235426 (2007). [DOI: 10.1103/PhysRevB.76.235426](https://doi.org/10.1103/PhysRevB.76.235426){:target='_blank'}.
+Cite the following works: [@Saidi2015], [@Jiao2016], [@Fichthorn2000], [@Neugebauer1993], [@Hortamani2007]
diff --git a/lang/en/docs/tutorials/materials/specific/grain-boundary-2d-boron-nitride.md b/lang/en/docs/tutorials/materials/specific/grain-boundary-2d-boron-nitride.md
index a233fed4..4e73a622 100644
--- a/lang/en/docs/tutorials/materials/specific/grain-boundary-2d-boron-nitride.md
+++ b/lang/en/docs/tutorials/materials/specific/grain-boundary-2d-boron-nitride.md
@@ -150,5 +150,4 @@ The following JupyterLite notebook demonstrates the complete process. Select "Ru
## References.
-1. Qiucheng Li, et al., "Grain Boundary Structures and Electronic Properties of Hexagonal Boron Nitride on Cu(111)", ACS Nano 2015 9 (6), 6308-6315. [DOI: 10.1021/acs.nanolett.5b01852](https://doi.org/10.1021/acs.nanolett.5b01852)
-
+Cite the following work: [@Li2015]
diff --git a/lang/en/docs/tutorials/materials/specific/grain-boundary-3d-fcc-metals-copper.md b/lang/en/docs/tutorials/materials/specific/grain-boundary-3d-fcc-metals-copper.md
index 5e9fb929..9b3ffae6 100644
--- a/lang/en/docs/tutorials/materials/specific/grain-boundary-3d-fcc-metals-copper.md
+++ b/lang/en/docs/tutorials/materials/specific/grain-boundary-3d-fcc-metals-copper.md
@@ -146,5 +146,4 @@ The following JupyterLite notebook demonstrates the complete process. Select "Ru
## References.
-1. Timofey Frolov, David L. Olmsted, Mark Asta & Yuri Mishin, "Structural phase transformations in metallic grain boundaries", Nature Communications, volume 4, Article number: 1899 (2013). [DOI: 10.1038/ncomms2919](https://www.nature.com/articles/ncomms2919)
-
+Cite the following work: [@Frolov2013]
diff --git a/lang/en/docs/tutorials/materials/specific/interface-2d-3d-graphene-silicon-dioxide.md b/lang/en/docs/tutorials/materials/specific/interface-2d-3d-graphene-silicon-dioxide.md
index ba42d61c..7bfea5a6 100644
--- a/lang/en/docs/tutorials/materials/specific/interface-2d-3d-graphene-silicon-dioxide.md
+++ b/lang/en/docs/tutorials/materials/specific/interface-2d-3d-graphene-silicon-dioxide.md
@@ -129,14 +129,4 @@ The interactive JupyterLite notebook for creating interfaces between graphene an
## References.
-1. **Yong-Ju Kang, Joongoo Kang, and K. J. Chang**
- "Electronic structure of graphene and doping effect on SiO2"
- Physical Review B 78, 115404 (2008)
- [DOI: 10.1103/PhysRevB.78.115404](https://doi.org/10.1103/PhysRevB.78.115404)
-
-
-2. **Arjun Dahala and Matthias Batzill**
- "Graphene–nickel interfaces: a review"
- Nanoscale 6, 2548-2562 (2014)
- [DOI: 10.1039/C3NR05279F](https://doi.org/10.1039/C3NR05279F)
-
+Cite the following works: [@Kang2008; @Dahal2014]
From b72b4c97c36d2860c4c7a1967a3cdd7ac6157f55 Mon Sep 17 00:00:00 2001
From: VsevolodX <79542055+VsevolodX@users.noreply.github.com>
Date: Fri, 3 Jan 2025 18:11:05 -0800
Subject: [PATCH 08/20] update: add links
---
lang/en/docs/includes/references.bib | 53 ++++++++++++++++++++++++----
1 file changed, 46 insertions(+), 7 deletions(-)
diff --git a/lang/en/docs/includes/references.bib b/lang/en/docs/includes/references.bib
index dd1881fb..12a9722f 100644
--- a/lang/en/docs/includes/references.bib
+++ b/lang/en/docs/includes/references.bib
@@ -40,6 +40,7 @@ @article{Kang2008
pages = {115404},
year = {2008},
doi = {10.1103/PhysRevB.78.115404},
+ url = {https://link.aps.org/doi/10.1103/PhysRevB.78.115404}
}
@article{Dahal2014,
@@ -50,6 +51,7 @@ @article{Dahal2014
pages = {2548-2562},
year = {2014},
doi = {10.1039/C3NR05279F},
+ url = {https://doi.org/10.1039/C3NR05279F}
}
@article{Miceli2016,
@@ -60,6 +62,7 @@ @article{Miceli2016
pages = {165207},
year = {2016},
doi = {10.1103/PhysRevB.93.165207},
+ url = {https://link.aps.org/doi/10.1103/PhysRevB.93.165207}
}
@article{Yoshitaka2011,
@@ -83,6 +86,7 @@ @article{Bertoldo2022
journal = {Nature},
year = {2022},
doi = {10.1038/s41524-022-00730-w}
+ url = {https://doi.org/10.1038/s41524-022-00730-w}
}
@article{Kohan2000,
@@ -94,6 +98,7 @@ @article{Kohan2000
pages = {15019-15027},
year = {2000},
doi = {10.1103/PhysRevB.61.15019}
+ url = {https://link.aps.org/doi/10.1103/PhysRevB.61.15019}
}
@article{Chan2008,
@@ -104,6 +109,7 @@ @article{Chan2008
pages = {235430},
year = {2008},
doi = {10.1103/PhysRevB.77.235430},
+ url = {https://link.aps.org/doi/10.1103/PhysRevB.77.235430}
}
@article{Sangiovanni2018,
@@ -113,7 +119,9 @@ @article{Sangiovanni2018
volume={97},
pages={035406},
year={2018},
- publisher={APS}
+ publisher={APS},
+ doi={10.1103/PhysRevB.97.035406},
+ url={https://link.aps.org/doi/10.1103/PhysRevB.97.035406}
}
@article{Sljivancanin2002,
@@ -137,7 +145,8 @@ @article{Saidi2015
number = {2},
pages = {642–652},
year = {2015},
- doi = {10.1021/cg5013395}
+ doi = {10.1021/cg5013395},
+ url = {https://doi.org/10.1021/cg5013395}
}
@article{Jiao2016,
@@ -148,7 +157,8 @@ @article{Jiao2016
number = {5},
pages = {3067–3074},
year = {2016},
- doi = {10.1039/c5nr07680c}
+ doi = {10.1039/c5nr07680c},
+ url = {https://doi.org/10.1039/c5nr07680c}
}
@article{Fichthorn2000,
@@ -158,7 +168,8 @@ @article{Fichthorn2000
volume = {84},
pages = {5371},
year = {2000},
- doi = {10.1103/PhysRevLett.84.5371}
+ doi = {10.1103/PhysRevLett.84.5371},
+ url = {https://link.aps.org/doi/10.1103/PhysRevLett.84.5371}
}
@article{Neugebauer1993,
@@ -168,7 +179,8 @@ @article{Neugebauer1993
volume = {71},
pages = {577},
year = {1993},
- doi = {10.1103/PhysRevLett.71.577}
+ doi = {10.1103/PhysRevLett.71.577},
+ url = {https://link.aps.org/doi/10.1103/PhysRevLett.71.577}
}
@article{Hortamani2007,
@@ -178,7 +190,8 @@ @article{Hortamani2007
volume = {76},
pages = {235426},
year = {2007},
- doi = {10.1103/PhysRevB.76.235426}
+ doi = {10.1103/PhysRevB.76.235426},
+ url = {https://link.aps.org/doi/10.1103/PhysRevB.76.235426}
}
@article{Li2015,
@@ -201,5 +214,31 @@ @article{Frolov2013
volume={4},
pages={1899},
year={2013},
- publisher={Nature Publishing Group}
+ publisher={Nature Publishing Group},
+ doi={10.1038/ncomms2924},
+ url={https://doi.org/10.1038/ncomms2924}
+}
+
+@article{Muller1999,
+ title={The electronic structure at the atomic scale of ultrathin gate oxides},
+ author={Muller, D A and Nakagawa, N and Ohtomo, A and Grazul, J L and Hwang, H Y},
+ journal={Nature},
+ volume={399},
+ pages={758--761},
+ year={1999},
+ publisher={Nature Publishing Group},
+ doi={10.1038/21667},
+ url={https://doi.org/10.1038/21667}
+}
+
+@article{Robertson2006,
+ title={High dielectric constant gate oxides for metal oxide Si transistors},
+ author={Robertson, J},
+ journal={Reports on Progress in Physics},
+ volume={69},
+ pages={327},
+ year={2006},
+ publisher={IOP Publishing},
+ doi={10.1088/0034-4885/69/2/R02},
+ url={https://doi.org/10.1088/0034-4885/69/2/R02}
}
\ No newline at end of file
From 2d64f21c9da13e9fb09c32e0ba9fdc560281fcc8 Mon Sep 17 00:00:00 2001
From: VsevolodX <79542055+VsevolodX@users.noreply.github.com>
Date: Fri, 3 Jan 2025 20:17:40 -0800
Subject: [PATCH 09/20] update: use new references style
---
...ioxide-hafnium-dioxide-titanium-nitride.md | 12 +----------
.../interface-2d-2d-graphene-boron-nitride.md | 20 +------------------
.../interface-3d-3d-copper-silicon-dioxide.md | 8 +-------
3 files changed, 3 insertions(+), 37 deletions(-)
diff --git a/lang/en/docs/tutorials/materials/specific/heterostructure-silicon-silicon-dioxide-hafnium-dioxide-titanium-nitride.md b/lang/en/docs/tutorials/materials/specific/heterostructure-silicon-silicon-dioxide-hafnium-dioxide-titanium-nitride.md
index 3673e695..22a52e66 100644
--- a/lang/en/docs/tutorials/materials/specific/heterostructure-silicon-silicon-dioxide-hafnium-dioxide-titanium-nitride.md
+++ b/lang/en/docs/tutorials/materials/specific/heterostructure-silicon-silicon-dioxide-hafnium-dioxide-titanium-nitride.md
@@ -203,15 +203,5 @@ The following JupyterLite notebook demonstrates the process of creating target m
## References.
-1. [QuantumATK tutorial](https://docs.quantumatk.com/tutorials/hkmg_builder/hkmg_builder.html)
-
-2. **D. A. Muller et al.**
- "The electronic structure at the atomic scale of ultrathin gate oxides"
- Nature 399, 758–761 (1999)
- [DOI: 10.1038/21602](https://doi.org/10.1038/21602)
-
-3. **J. Robertson**
- "High dielectric constant gate oxides for metal oxide Si transistors"
- Reports on Progress in Physics 69, 327 (2006)
- [DOI: 10.1088/0034-4885/69/2/R02](https://doi.org/10.1088/0034-4885/69/2/R02)
+Cite the following works: [@Muller1999; @Robertson2006], [QuantumATK tutorial](https://docs.quantumatk.com/tutorials/hkmg_builder/hkmg_builder.html)
diff --git a/lang/en/docs/tutorials/materials/specific/interface-2d-2d-graphene-boron-nitride.md b/lang/en/docs/tutorials/materials/specific/interface-2d-2d-graphene-boron-nitride.md
index d2df14c0..cc0ebeee 100644
--- a/lang/en/docs/tutorials/materials/specific/interface-2d-2d-graphene-boron-nitride.md
+++ b/lang/en/docs/tutorials/materials/specific/interface-2d-2d-graphene-boron-nitride.md
@@ -22,7 +22,7 @@ This tutorial demonstrates the process of creating interfaces with different sta
**Jeil Jung, Ashley M. DaSilva, Allan H. MacDonald & Shaffique Adam**
**Origin of the band gap in graphene on hexagonal boron nitride**
Nature Communications volume 6, Article number: 6308 (2015)
- [DOI: 10.1038/ncomms7308](https://doi.org/10.1038/ncomms7308)
+ [DOI: 10.1038/ncomms7308](https://doi.org/10.1038/ncomms7308) [@Jung2015; @Novoselov2016; @Gupta2024]
We use the [Materials Designer](../../../materials-designer/overview.md) to create interfaces and shift the layers along the y-axis to achieve different stacking configurations.
@@ -160,21 +160,3 @@ The interactive JupyterLite notebook for creating Gr/h-BN interface can be acces
## References.
-1. **Jeil Jung, Ashley M. DaSilva, Allan H. MacDonald & Shaffique Adam**
-
- "Origin of the band gap in graphene on hexagonal boron nitride"
- Nature Communications volume 6, Article number: 6308 (2015)
- [DOI: 10.1038/ncomms7308](https://doi.org/10.1038/ncomms7308)
-
-2. **K. S. Novoselov, A. Mishchenko, A. Carvalho, A. H. Castro Neto**
-
- "2D materials and van der Waals heterostructures"
- Science 353, 6298 (2016)
- [DOI: 10.1126/science.aac9439](https://doi.org/10.1126/science.aac9439)
-
-3. **Neelam Gupta, Saurav Sachin, Puja Kumari, Shivani Rania and Soumya Jyoti Ray**
-
- "Twistronics in two-dimensional transition metal dichalcogenide (TMD)-based van der Waals interface"
- RSC Adv., 2024, 4, 1-10
- [DOI: 10.1039/D3RA06559F](https://doi.org/10.1039/D3RA06559F)
-
diff --git a/lang/en/docs/tutorials/materials/specific/interface-3d-3d-copper-silicon-dioxide.md b/lang/en/docs/tutorials/materials/specific/interface-3d-3d-copper-silicon-dioxide.md
index a0355190..764914d0 100644
--- a/lang/en/docs/tutorials/materials/specific/interface-3d-3d-copper-silicon-dioxide.md
+++ b/lang/en/docs/tutorials/materials/specific/interface-3d-3d-copper-silicon-dioxide.md
@@ -24,8 +24,7 @@ This tutorial demonstrates the process of creating interfaces between 3D materia
**Shan, T.-R., Devine, B. D., Phillpot, S. R., & Sinnott, S. B.**
"Molecular dynamics study of the adhesion of Cu/SiO2interfaces using a variable-charge interatomic potential."
Physical Review B, 83(11).
- [DOI: 10.1103/PhysRevB.83.115327](https://doi.org/10.1103/PhysRevB.83.115327)
-
+ [DOI: 10.1103/PhysRevB.83.115327](https://doi.org/10.1103/PhysRevB.83.115327) [@Shan2011].
We use the [Materials Designer](../../../materials-designer/overview.md) to create interfaces between Cu and Cristobalite with different termination pairs.
@@ -142,8 +141,3 @@ The interactive JupyterLite notebook for creating interfaces between Copper and
{% endwith %}
## References.
-
-1. Shan, T.-R., Devine, B. D., Phillpot, S. R., & Sinnott, S. B. (2011).
- Molecular dynamics study of the adhesion of Cu/SiO2interfaces using a variable-charge interatomic potential. Physical Review B, 83(11).
- [DOI: 10.1103/PhysRevB.83.115327](https://doi.org/10.1103/PhysRevB.83.115327)
-
From 32c6247c8b106850bcb728f049e023567818c103 Mon Sep 17 00:00:00 2001
From: VsevolodX <79542055+VsevolodX@users.noreply.github.com>
Date: Fri, 3 Jan 2025 20:19:11 -0800
Subject: [PATCH 10/20] update: bibtex refs
---
lang/en/docs/includes/references.bib | 411 +++++++++++++++------------
1 file changed, 229 insertions(+), 182 deletions(-)
diff --git a/lang/en/docs/includes/references.bib b/lang/en/docs/includes/references.bib
index 12a9722f..039d6f2f 100644
--- a/lang/en/docs/includes/references.bib
+++ b/lang/en/docs/includes/references.bib
@@ -1,244 +1,291 @@
@article{Togo2006,
- title={First-principles calculations of native defects in tin monoxide},
- author={Togo, A. and Oba, F. and Tanaka, I.},
- journal={Physical Review B},
- volume={74},
- number={19},
- pages={195128},
- year={2006},
- doi={10.1103/PhysRevB.74.195128},
- url={https://doi.org/10.1103/PhysRevB.74.195128}
+ title = {First-principles calculations of native defects in tin monoxide},
+ author = {Togo, A. and Oba, F. and Tanaka, I.},
+ journal = {Physical Review B},
+ volume = {74},
+ number = {19},
+ pages = {195128},
+ year = {2006},
+ @doi = {10.1103/PhysRevB.74.195128},
+ url = {https://doi.org/10.1103/PhysRevB.74.195128}
}
@article{Wang2014,
- title={Carbon related defects in irradiated silicon revisited},
- author={Wang, H. and Chroneos, A. and Londos, C. A. and Sgourou, E. N. and Schwingenschlögl, U.},
- journal={Scientific Reports},
- volume={4},
- pages={4909},
- year={2014},
- doi={10.1038/srep04909},
- url={https://doi.org/10.1038/srep04909}
+ title = {Carbon related defects in irradiated silicon revisited},
+ author = {Wang, H. and Chroneos, A. and Londos, C. A. and Sgourou, E. N. and Schwingenschlögl, U.},
+ journal = {Scientific Reports},
+ volume = {4},
+ pages = {4909},
+ year = {2014},
+ @doi = {10.1038/srep04909},
+ url = {https://doi.org/10.1038/srep04909}
}
@article{Na-Phattalung2006,
- title={First-principles study of native defects in anatase TiO2},
- author={Na-Phattalung, Sutassana and Smith, M. F. and Kim, Kwiseon and Du, Mao-Hua and Wei, Su-Huai and Zhang, S. B. and Limpijumnong, Sukit},
- journal={Physical Review B},
- volume={73},
- pages={125205},
- year={2006},
- doi={10.1103/PhysRevB.73.125205},
- url={https://doi.org/10.1103/PhysRevB.73.125205}
+ title = {First-principles study of native defects in anatase TiO2},
+ author = {Na-Phattalung, Sutassana and Smith, M. F. and Kim, Kwiseon and Du, Mao-Hua and Wei, Su-Huai and Zhang, S. B. and Limpijumnong, Sukit},
+ journal = {Physical Review B},
+ volume = {73},
+ pages = {125205},
+ year = {2006},
+ @doi = {10.1103/PhysRevB.73.125205},
+ url = {https://doi.org/10.1103/PhysRevB.73.125205}
}
@article{Kang2008,
- title = {Electronic structure of graphene and doping effect on SiO2},
- author = {Kang, Yong-Ju and Kang, Joongoo and Chang, K. J.},
- journal = {Physical Review B},
- volume = {78},
- pages = {115404},
- year = {2008},
- doi = {10.1103/PhysRevB.78.115404},
- url = {https://link.aps.org/doi/10.1103/PhysRevB.78.115404}
+ title = {Electronic structure of graphene and doping effect on SiO2},
+ author = {Kang, Yong-Ju and Kang, Joongoo and Chang, K. J.},
+ journal = {Physical Review B},
+ volume = {78},
+ pages = {115404},
+ year = {2008},
+ @doi = {10.1103/PhysRevB.78.115404},
+ url = {https://link.aps.org/doi/10.1103/PhysRevB.78.115404}
}
@article{Dahal2014,
- title = {Graphene–nickel interfaces: a review},
- author = {Dahal, Arjun and Batzill, Matthias},
- journal = {Nanoscale},
- volume = {6},
- pages = {2548-2562},
- year = {2014},
- doi = {10.1039/C3NR05279F},
- url = {https://doi.org/10.1039/C3NR05279F}
+ title = {Graphene–nickel interfaces: a review},
+ author = {Dahal, Arjun and Batzill, Matthias},
+ journal = {Nanoscale},
+ volume = {6},
+ pages = {2548-2562},
+ year = {2014},
+ @doi = {10.1039/C3NR05279F},
+ url = {https://doi.org/10.1039/C3NR05279F}
}
@article{Miceli2016,
- title = {Self-compensation due to point defects in Mg-doped GaN},
- author = {Miceli, Giacomo and Pasquarello, Alfredo},
- journal = {Physical Review B},
- volume = {93},
- pages = {165207},
- year = {2016},
- doi = {10.1103/PhysRevB.93.165207},
- url = {https://link.aps.org/doi/10.1103/PhysRevB.93.165207}
+ title = {Self-compensation due to point defects in Mg-doped GaN},
+ author = {Miceli, Giacomo and Pasquarello, Alfredo},
+ journal = {Physical Review B},
+ volume = {93},
+ pages = {165207},
+ year = {2016},
+ @doi = {10.1103/PhysRevB.93.165207},
+ url = {https://link.aps.org/doi/10.1103/PhysRevB.93.165207}
}
@article{Yoshitaka2011,
- title = {Formation, stabilities, and electronic properties of nitrogen defects in graphene},
- author = {Fujimoto, Yoshitaka and Saito, Susumu},
- journal = {Phys. Rev. B},
- volume = {84},
- issue = {24},
- pages = {245446},
- numpages = {9},
- year = {2011},
- month = {Dec},
- publisher = {American Physical Society},
- doi = {10.1103/PhysRevB.84.245446},
- url = {https://link.aps.org/doi/10.1103/PhysRevB.84.245446}
+ title = {Formation, stabilities, and electronic properties of nitrogen defects in graphene},
+ author = {Fujimoto, Yoshitaka and Saito, Susumu},
+ journal = {Phys. Rev. B},
+ volume = {84},
+ issue = {24},
+ pages = {245446},
+ numpages = {9},
+ year = {2011},
+ month = {Dec},
+ publisher = {American Physical Society},
+ @doi = {10.1103/PhysRevB.84.245446},
+ url = {https://link.aps.org/doi/10.1103/PhysRevB.84.245446}
}
@article{Bertoldo2022,
- title = {Quantum point defects in 2D materials - the QPOD database},
- author = {Bertoldo, Fabian and Ali, Sajid and Manti, Simone and Thygesen, Kristian S.},
- journal = {Nature},
- year = {2022},
- doi = {10.1038/s41524-022-00730-w}
- url = {https://doi.org/10.1038/s41524-022-00730-w}
+ title = {Quantum point defects in 2D materials - the QPOD database},
+ author = {Bertoldo, Fabian and Ali, Sajid and Manti, Simone and Thygesen, Kristian S.},
+ journal = {Nature},
+ year = {2022},
+ @doi = {10.1038/s41524-022-00730-w},
+ url = {https://doi.org/10.1038/s41524-022-00730-w}
}
@article{Kohan2000,
- title = {First-principles study of native point defects in h-BN},
- author = {Kohan, A. F. and Ceder, G. and Morgan, D. and Van de Walle, C. G.},
- journal = {Physical Review B},
- volume = {61},
- number = {23},
- pages = {15019-15027},
- year = {2000},
- doi = {10.1103/PhysRevB.61.15019}
- url = {https://link.aps.org/doi/10.1103/PhysRevB.61.15019}
+ title = {First-principles study of native point defects in h-BN},
+ author = {Kohan, A. F. and Ceder, G. and Morgan, D. and Van de Walle, C. G.},
+ journal = {Physical Review B},
+ volume = {61},
+ number = {23},
+ pages = {15019-15027},
+ year = {2000},
+ @doi = {10.1103/PhysRevB.61.15019},
+ url = {https://link.aps.org/doi/10.1103/PhysRevB.61.15019}
}
@article{Chan2008,
- title = {First-principles study of metal adatom adsorption on graphene},
- author = {Chan, Kevin T. and Neaton, J. B. and Cohen, Marvin L.},
- journal = {Phys. Rev. B},
- volume = {77},
- pages = {235430},
- year = {2008},
- doi = {10.1103/PhysRevB.77.235430},
- url = {https://link.aps.org/doi/10.1103/PhysRevB.77.235430}
+ title = {First-principles study of metal adatom adsorption on graphene},
+ author = {Chan, Kevin T. and Neaton, J. B. and Cohen, Marvin L.},
+ journal = {Phys. Rev. B},
+ volume = {77},
+ pages = {235430},
+ year = {2008},
+ @doi = {10.1103/PhysRevB.77.235430},
+ url = {https://link.aps.org/doi/10.1103/PhysRevB.77.235430}
}
@article{Sangiovanni2018,
- title={Effects of surface vibrations on interlayer mass transport: Ab initio molecular dynamics investigation of Ti adatom descent pathways and rates from TiN/TiN(001) islands},
- author={Sangiovanni, D. G. and Mei, A. B. and Edström, D. and Hultman, L. and Chirita, V. and Petrov, I. and Greene, J. E.},
- journal={Physical Review B},
- volume={97},
- pages={035406},
- year={2018},
- publisher={APS},
- doi={10.1103/PhysRevB.97.035406},
- url={https://link.aps.org/doi/10.1103/PhysRevB.97.035406}
+ title = {Effects of surface vibrations on interlayer mass transport: Ab initio molecular dynamics investigation of Ti adatom descent pathways and rates from TiN/TiN(001) islands},
+ author = {Sangiovanni, D. G. and Mei, A. B. and Edström, D. and Hultman, L. and Chirita, V. and Petrov, I. and Greene, J. E.},
+ journal = {Physical Review B},
+ volume = {97},
+ pages = {035406},
+ year = {2018},
+ publisher = {APS},
+ @doi = {10.1103/PhysRevB.97.035406},
+ url = {https://link.aps.org/doi/10.1103/PhysRevB.97.035406}
}
@article{Sljivancanin2002,
- doi = {10.1016/s0039-6028(02)01908-8},
- url = {https://doi.org/10.1016/s0039-6028(02)01908-8},
- year = {2002},
- publisher = {Elsevier {BV}},
- volume = {515},
- number = {1},
- pages = {235--244},
- author = {Z. Šljivančanin and B. Hammer},
- title = {Oxygen dissociation at close-packed {Pt} terraces, {Pt} steps, and {Ag}-covered {Pt} steps studied with density functional theory},
- journal = {Surface Science}
+ @doi = {10.1016/s0039-6028(02)01908-8},
+ url = {https://doi.org/10.1016/s0039-6028(02)01908-8},
+ year = {2002},
+ publisher = {Elsevier {BV}},
+ volume = {515},
+ number = {1},
+ pages = {235--244},
+ author = {Z. Šljivančanin and B. Hammer},
+ title = {Oxygen dissociation at close-packed {Pt} terraces, {Pt} steps, and {Ag}-covered {Pt} steps studied with density functional theory},
+ journal = {Surface Science}
}
@article{Saidi2015,
- title = {Density Functional Theory Study of Nucleation and Growth of Pt Nanoparticles on MoS2(001) Surface},
- author = {Saidi, W. A.},
- journal = {Crystal Growth & Design},
- volume = {15},
- number = {2},
- pages = {642–652},
- year = {2015},
- doi = {10.1021/cg5013395},
- url = {https://doi.org/10.1021/cg5013395}
+ title = {Density Functional Theory Study of Nucleation and Growth of Pt Nanoparticles on MoS2(001) Surface},
+ author = {Saidi, W. A.},
+ journal = {Crystal Growth & Design},
+ volume = {15},
+ number = {2},
+ pages = {642–652},
+ year = {2015},
+ @doi = {10.1021/cg5013395},
+ url = {https://doi.org/10.1021/cg5013395}
}
@article{Jiao2016,
- title = {QM/MD studies on graphene growth from small islands on the Ni(111) surface},
- author = {Jiao, M. and Song, W. and Qian, H.-J. and Wang, Y. and Wu, Z. and Irle, S. and Morokuma, K.},
- journal = {Nanoscale},
- volume = {8},
- number = {5},
- pages = {3067–3074},
- year = {2016},
- doi = {10.1039/c5nr07680c},
- url = {https://doi.org/10.1039/c5nr07680c}
+ title = {QM/MD studies on graphene growth from small islands on the Ni(111) surface},
+ author = {Jiao, M. and Song, W. and Qian, H.-J. and Wang, Y. and Wu, Z. and Irle, S. and Morokuma, K.},
+ journal = {Nanoscale},
+ volume = {8},
+ number = {5},
+ pages = {3067–3074},
+ year = {2016},
+ @doi = {10.1039/c5nr07680c},
+ url = {https://doi.org/10.1039/c5nr07680c}
}
@article{Fichthorn2000,
- title = {Island Nucleation in Thin-Film Epitaxy: A First-Principles Investigation},
- author = {Kristen A. Fichthorn and Matthias Scheffler},
- journal = {Phys. Rev. Lett.},
- volume = {84},
- pages = {5371},
- year = {2000},
- doi = {10.1103/PhysRevLett.84.5371},
- url = {https://link.aps.org/doi/10.1103/PhysRevLett.84.5371}
+ title = {Island Nucleation in Thin-Film Epitaxy: A First-Principles Investigation},
+ author = {Kristen A. Fichthorn and Matthias Scheffler},
+ journal = {Phys. Rev. Lett.},
+ volume = {84},
+ pages = {5371},
+ year = {2000},
+ @doi = {10.1103/PhysRevLett.84.5371},
+ url = {https://link.aps.org/doi/10.1103/PhysRevLett.84.5371}
}
@article{Neugebauer1993,
- title = {Mechanisms of island formation of alkali-metal adsorbates on Al(111)},
- author = {Jörg Neugebauer and Matthias Scheffler},
- journal = {Phys. Rev. Lett.},
- volume = {71},
- pages = {577},
- year = {1993},
- doi = {10.1103/PhysRevLett.71.577},
- url = {https://link.aps.org/doi/10.1103/PhysRevLett.71.577}
+ title = {Mechanisms of island formation of alkali-metal adsorbates on Al(111)},
+ author = {Jörg Neugebauer and Matthias Scheffler},
+ journal = {Phys. Rev. Lett.},
+ volume = {71},
+ pages = {577},
+ year = {1993},
+ @doi = {10.1103/PhysRevLett.71.577},
+ url = {https://link.aps.org/doi/10.1103/PhysRevLett.71.577}
}
@article{Hortamani2007,
- title = {Density-functional study of Mn monosilicide on the Si(111) surface: Film formation versus island nucleation},
- author = {Mahbube Hortamani and Peter Kratzer and Matthias Scheffler},
- journal = {Phys. Rev. B},
- volume = {76},
- pages = {235426},
- year = {2007},
- doi = {10.1103/PhysRevB.76.235426},
- url = {https://link.aps.org/doi/10.1103/PhysRevB.76.235426}
+ title = {Density-functional study of Mn monosilicide on the Si(111) surface: Film formation versus island nucleation},
+ author = {Mahbube Hortamani and Peter Kratzer and Matthias Scheffler},
+ journal = {Phys. Rev. B},
+ volume = {76},
+ pages = {235426},
+ year = {2007},
+ @doi = {10.1103/PhysRevB.76.235426},
+ url = {https://link.aps.org/doi/10.1103/PhysRevB.76.235426}
}
@article{Li2015,
- doi = {10.1021/acs.nanolett.5b01852},
- url = {https://doi.org/10.1021/acs.nanolett.5b01852},
- year = {2015},
- publisher = {American Chemical Society ({ACS})},
- volume = {9},
- number = {6},
- pages = {6308--6315},
- author = {Qiucheng Li and Xiaolong Zou and Mengxi Liu and Jingyu Sun and Yabo Gao and Yue Qi and Xiebo Zhou and Boris I. Yakobson and Yanfeng Zhang and Zhongfan Liu},
- title = {Grain Boundary Structures and Electronic Properties of Hexagonal Boron Nitride on Cu(111)},
- journal = {{ACS} Nano}
+ @doi = {10.1021/acs.nanolett.5b01852},
+ url = {https://doi.org/10.1021/acs.nanolett.5b01852},
+ year = {2015},
+ publisher = {American Chemical Society ({ACS})},
+ volume = {9},
+ number = {6},
+ pages = {6308--6315},
+ author = {Qiucheng Li and Xiaolong Zou and Mengxi Liu and Jingyu Sun and Yabo Gao and Yue Qi and Xiebo Zhou and Boris I. Yakobson and Yanfeng Zhang and Zhongfan Liu},
+ title = {Grain Boundary Structures and Electronic Properties of Hexagonal Boron Nitride on Cu(111)},
+ journal = {{ACS} Nano}
}
@article{Frolov2013,
- title={Structural phase transformations in metallic grain boundaries},
- author={Frolov, Timofey and Olmsted, David L and Asta, Mark and Mishin, Yuri},
- journal={Nature Communications},
- volume={4},
- pages={1899},
- year={2013},
- publisher={Nature Publishing Group},
- doi={10.1038/ncomms2924},
- url={https://doi.org/10.1038/ncomms2924}
+ title = {Structural phase transformations in metallic grain boundaries},
+ author = {Frolov, Timofey and Olmsted, David L and Asta, Mark and Mishin, Yuri},
+ journal = {Nature Communications},
+ volume = {4},
+ pages = {1899},
+ year = {2013},
+ publisher = {Nature Publishing Group},
+ @doi = {10.1038/ncomms2924},
+ url = {https://doi.org/10.1038/ncomms2924}
}
@article{Muller1999,
- title={The electronic structure at the atomic scale of ultrathin gate oxides},
- author={Muller, D A and Nakagawa, N and Ohtomo, A and Grazul, J L and Hwang, H Y},
- journal={Nature},
- volume={399},
- pages={758--761},
- year={1999},
- publisher={Nature Publishing Group},
- doi={10.1038/21667},
- url={https://doi.org/10.1038/21667}
+ title = {The electronic structure at the atomic scale of ultrathin gate oxides},
+ author = {Muller, D A and Nakagawa, N and Ohtomo, A and Grazul, J L and Hwang, H Y},
+ journal = {Nature},
+ volume = {399},
+ pages = {758--761},
+ year = {1999},
+ publisher = {Nature Publishing Group},
+ @doi = {10.1038/21667},
+ url = {https://doi.org/10.1038/21667}
}
@article{Robertson2006,
- title={High dielectric constant gate oxides for metal oxide Si transistors},
- author={Robertson, J},
- journal={Reports on Progress in Physics},
- volume={69},
- pages={327},
- year={2006},
- publisher={IOP Publishing},
- doi={10.1088/0034-4885/69/2/R02},
- url={https://doi.org/10.1088/0034-4885/69/2/R02}
+ title = {High dielectric constant gate oxides for metal oxide Si transistors},
+ author = {Robertson, J},
+ journal = {Reports on Progress in Physics},
+ volume = {69},
+ pages = {327},
+ year = {2006},
+ publisher = {IOP Publishing},
+ @doi = {10.1088/0034-4885/69/2/R02},
+ url = {https://doi.org/10.1088/0034-4885/69/2/R02}
+}
+
+@article{Jung2015,
+ title = {Origin of the band gap in graphene on hexagonal boron nitride},
+ author = {Jeil Jung, Ashley M. DaSilva, Allan H. MacDonald & Shaffique Adam},
+ journal = {Nature Communications},
+ volume = {6},
+ pages = {6308},
+ year = {2015},
+ @doi = {10.1038/ncomms7308},
+ url = {https://doi.org/10.1038/ncomms7308}
+}
+
+@article{Novoselov2016,
+ title = {2D materials and van der Waals heterostructures},
+ author = {K. S. Novoselov, A. Mishchenko, A. Carvalho and A. H. Castro Neto},
+ journal = {Science},
+ volume = {353},
+ number = {6298},
+ pages = {aac9439},
+ year = {2016},
+ @doi = {10.1126/science.aac9439},
+ url = {https://doi.org/10.1126/science.aac9439}
+}
+
+@article{Gupta2024,
+ title = {Twistronics in two-dimensional transition metal dichalcogenide (TMD)-based van der Waals interface},
+ author = {Neelam Gupta and Saurav Sachin and Puja Kumari and Shivani Rania and Soumya Jyoti Ray},
+ journal = {RSC Adv.},
+ volume = {2024},
+ number = {4},
+ pages = {1-10},
+ year = {2024},
+ @doi = {10.1039/D3RA06559F},
+ url = {https://doi.org/10.1039/D3RA06559F}
+}
+
+
+@article{Shan2011,
+ title = {Molecular dynamics study of the adhesion of Cu/SiO2interfaces using a variable-charge interatomic potential},
+ author = {Shan, T.-R. and Devine, B. D. and Phillpot, S. R. and Sinnott, S. B.},
+ journal = {Physical Review B},
+ volume = {83},
+ number = {11},
+ year = {2011},
+ @doi = {10.1103/PhysRevB.83.115327},
+ url = {https://doi.org/10.1103/PhysRevB.83.115327}
}
\ No newline at end of file
From 318e258fde627eb7371408ba00cabe93ab7782b4 Mon Sep 17 00:00:00 2001
From: VsevolodX <79542055+VsevolodX@users.noreply.github.com>
Date: Mon, 6 Jan 2025 11:15:52 -0800
Subject: [PATCH 11/20] update: more bibtex refs
---
lang/en/docs/includes/references.bib | 70 +++++++++++++++++++
...mensurate-lattices-molybdenum-disulfide.md | 6 +-
...layer-twisted-nanoribbons-boron-nitride.md | 7 +-
.../materials/specific/nanocluster-gold.md | 9 +--
...film-position-graphene-nickel-interface.md | 9 +--
5 files changed, 75 insertions(+), 26 deletions(-)
diff --git a/lang/en/docs/includes/references.bib b/lang/en/docs/includes/references.bib
index 039d6f2f..a1766cd5 100644
--- a/lang/en/docs/includes/references.bib
+++ b/lang/en/docs/includes/references.bib
@@ -288,4 +288,74 @@ @article{Shan2011
year = {2011},
@doi = {10.1103/PhysRevB.83.115327},
url = {https://doi.org/10.1103/PhysRevB.83.115327}
+}
+
+@article{Liu2014,
+ title = {Evolution of interlayer coupling in twisted molybdenum disulfide bilayers},
+ author = {Kaihui Liu and Liming Zhang and Ting Cao and Chenhao Jin and Diana Qiu and Qin Zhou and Alex Zettl and Peidong Yang and Steve G. Louie and Feng Wang},
+ journal = {Nature Communications},
+ volume = {5},
+ pages = {4966},
+ year = {2014},
+ doi = {10.1038/ncomms5966},
+ url = {https://doi.org/10.1038/ncomms5966}
+}
+
+@article{Cao2018,
+ title = {Unconventional superconductivity in magic-angle graphene superlattices},
+ author = {Cao, Y. and Fatemi, V. and Fang, S. and et al.},
+ journal = {Nature},
+ volume = {556},
+ pages = {43–50},
+ year = {2018},
+ @doi = {10.1038/nature26160},
+ url = {https://doi.org/10.1038/nature26160}
+}
+}
+
+@article{Xian2020,
+ title = {Multiflat Bands and Strong Correlations in Twisted Bilayer Boron Nitride: Doping-Induced Correlated Insulator and Superconductor},
+ author = {Lede Xian and Dante M. Kennes and Nicolas Tancogne-Dejean and Massimo Altarelli and Angel Rubio},
+ journal = {Phys. Rev. Lett.},
+ volume = {125},
+ pages = {086402},
+ year = {2020},
+ @doi = {10.1021/acs.nanolett.9b00986},
+ url = {https://doi.org/10.1021/acs.nanolett.9b00986}
+}
+
+
+@article{Larsen2011,
+ author = {Larsen, Ask Hjorth and Kleis, Jesper and Thygesen, Kristian Sommer and N{\o}rskov, Jens K. and Jacobsen, Karsten Wedel},
+ journal = {Phys. Rev. B},
+ number = {24},
+ pages = {245429},
+ title = {Electronic shell structure and chemisorption on gold nanoparticles},
+ volume = {84},
+ year = {2011},
+ @doi = {10.1103/PhysRevB.84.245429},
+ url = {https://doi.org/10.1103/PhysRevB.84.245429}
+}
+
+@article{Gamo1997,
+ title = {Atomic structure of monolayer graphite formed on Ni(111)},
+ author = {Gamo, Y. and Nagashima, A. and Wakabayashi, M. and Terai, M. and Oshima, C.},
+ journal = {Surface Science},
+ volume = {374},
+ number = {1-3},
+ pages = {61-64},
+ year = {1997},
+ @doi = {10.1016/S0039-6028(96)01307-3},
+ url = {https://www.sciencedirect.com/science/article/abs/pii/S0039602896007856}
+}
+
+@article{Bertoni2004,
+ title = {First-principles calculation of the electronic structure and EELS spectra at the graphene/Ni(111) interface},
+ author = {Bertoni, G. and Calmels, L. and Altibelli, A. and Serin, V.},
+ journal = {Physical Review B},
+ volume = {71},
+ number = {7},
+ year = {2004},
+ @doi = {10.1103/PhysRevB.71.075402},
+ url = {https://journals.aps.org/prb/abstract/10.1103/PhysRevB.71.075402}
}
\ No newline at end of file
diff --git a/lang/en/docs/tutorials/materials/specific/interface-bilayer-twisted-commensurate-lattices-molybdenum-disulfide.md b/lang/en/docs/tutorials/materials/specific/interface-bilayer-twisted-commensurate-lattices-molybdenum-disulfide.md
index 22833520..ee0812f9 100644
--- a/lang/en/docs/tutorials/materials/specific/interface-bilayer-twisted-commensurate-lattices-molybdenum-disulfide.md
+++ b/lang/en/docs/tutorials/materials/specific/interface-bilayer-twisted-commensurate-lattices-molybdenum-disulfide.md
@@ -23,7 +23,7 @@ This tutorial demonstrates the process of creating a twisted bilayer molybdenum
!!!note "Manuscript"
**Kaihui Liu, Liming Zhang, Ting Cao, Chenhao Jin, Diana Qiu, Qin Zhou, Alex Zettl, Peidong Yang, Steve G. Louie & Feng Wang**,
"Evolution of interlayer coupling in twisted molybdenum disulfide bilayers" Nature Communications volume 5, Article number: 4966 (2014)
- [DOI: 10.1038/ncomms5966](https://doi.org/10.1038/ncomms5966)
+ [DOI: 10.1038/ncomms5966](https://doi.org/10.1038/ncomms5966) [@Liu2014; @Zhang2016; @Cao2018]
We use the [Materials Designer](../../../materials-designer/overview.md) to create molybdenum disulfide bilayer structure configurations with multiple twist angles.
@@ -153,7 +153,3 @@ The interactive JupyterLite notebook for creating twisted bilayer MoS2 structure
{% endwith %}
## References.
-
-1. Kaihui Liu, Liming Zhang, Ting Cao, Chenhao Jin, Diana Qiu, Qin Zhou, Alex Zettl, Peidong Yang, Steve G. Louie & Feng Wang, "Evolution of interlayer coupling in twisted molybdenum disulfide bilayers" Nature Communications volume 5, Article number: 4966 (2014) [DOI: 10.1038/ncomms5966](https://doi.org/10.1038/ncomms5966)
-2. Cao, Y., Fatemi, V., Fang, S. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018). [DOI: 10.1038/nature26160](https://doi.org/10.1038/nature26160)
-
diff --git a/lang/en/docs/tutorials/materials/specific/interface-bilayer-twisted-nanoribbons-boron-nitride.md b/lang/en/docs/tutorials/materials/specific/interface-bilayer-twisted-nanoribbons-boron-nitride.md
index 4fbc2335..f1ccc5bf 100644
--- a/lang/en/docs/tutorials/materials/specific/interface-bilayer-twisted-nanoribbons-boron-nitride.md
+++ b/lang/en/docs/tutorials/materials/specific/interface-bilayer-twisted-nanoribbons-boron-nitride.md
@@ -22,7 +22,7 @@ This tutorial demonstrates the process of creating a twisted bilayer boron nitri
!!!note "Manuscript"
**Lede Xian, Dante M. Kennes, Nicolas Tancogne-Dejean, Massimo Altarelli, and Angel Rubio**,
"Multiflat Bands and Strong Correlations in Twisted Bilayer Boron Nitride: Doping-Induced Correlated Insulator and Superconductor" Phys. Rev. Lett. 125, 086402, 20 August 2020
- [DOI: 10.1021/acs.nanolett.9b00986](https://doi.org/10.1021/acs.nanolett.9b00986)
+ [DOI: 10.1021/acs.nanolett.9b00986](https://doi.org/10.1021/acs.nanolett.9b00986) [@Xian2020]
We use the [Materials Designer](../../../materials-designer/overview.md) to create Hexagonal boron nitride bilayer structure configurations with 2 specific twist angles.
@@ -121,8 +121,5 @@ The interactive JupyterLite notebook for creating the twisted bilayer boron nitr
{% endwith %}
{% endwith %}
-## References.
-
-1. **Lede Xian, Dante M. Kennes, Nicolas Tancogne-Dejean, Massimo Altarelli, and Angel Rubio**,
- "Multiflat Bands and Strong Correlations in Twisted Bilayer Boron Nitride: Doping-Induced Correlated Insulator and Superconductor" Phys. Rev. Lett. 125, 086402 – Published 20 August 2020 DOI: 10.1021/acs.nanolett.9b00986
+## References.
diff --git a/lang/en/docs/tutorials/materials/specific/nanocluster-gold.md b/lang/en/docs/tutorials/materials/specific/nanocluster-gold.md
index de41190c..540a2b30 100644
--- a/lang/en/docs/tutorials/materials/specific/nanocluster-gold.md
+++ b/lang/en/docs/tutorials/materials/specific/nanocluster-gold.md
@@ -22,7 +22,7 @@ This tutorial demonstrates the process of creating a gold nanoparticle structure
> **A. H. Larsen, J. Kleis, K. S. Thygesen, J. K. Nørskov, and K. W. Jacobsen**,
> "Electronic shell structure and chemisorption on gold nanoparticles",
> *Phys. Rev. B 84, 245429 (2011)*,
- > [DOI: 10.1103/PhysRevB.84.245429](https://doi.org/10.1103/PhysRevB.84.245429){:target='_blank'}.
+ > [DOI: 10.1103/PhysRevB.84.245429](https://doi.org/10.1103/PhysRevB.84.245429){:target='_blank'}. [@Larsen2011]
We use the [Materials Designer](../../../materials-designer/overview.md) to create gold nanoparticle structures of cuboctahedral and icosahedral shapes as shown in the image below.
@@ -168,10 +168,3 @@ The interactive JupyterLite notebook for creating Gold Nanoclusters can be acces
{% endwith %}
## References.
-
-1. **A. H. Larsen, J. Kleis, K. S. Thygesen, J. K. Nørskov, and K. W. Jacobsen**,
- "Electronic shell structure and chemisorption on gold nanoparticles",
- *Phys. Rev. B 84, 245429 (2011)*,
- [DOI: 10.1103/PhysRevB.84.245429](https://doi.org/10.1103/PhysRevB.84.245429){:target='_blank'}.
-
-
diff --git a/lang/en/docs/tutorials/materials/specific/optimize-film-position-graphene-nickel-interface.md b/lang/en/docs/tutorials/materials/specific/optimize-film-position-graphene-nickel-interface.md
index a99137a2..677f11a1 100644
--- a/lang/en/docs/tutorials/materials/specific/optimize-film-position-graphene-nickel-interface.md
+++ b/lang/en/docs/tutorials/materials/specific/optimize-film-position-graphene-nickel-interface.md
@@ -26,7 +26,7 @@ This tutorial demonstrates how to create and optimize a Graphene/Ni(111) interfa
Arjun Dahal, Matthias Batzill
"Graphene–nickel interfaces: a review"
Nanoscale, 6(5), 2548. (2014)
- [DOI: 10.1039/c3nr05279f](https://doi.org/10.1039/c3nr05279f){:target='_blank'}.
+ [DOI: 10.1039/c3nr05279f](https://doi.org/10.1039/c3nr05279f){:target='_blank'}. [@Dahal2014; @Gamo1997; @Bertoni2004]
We will recreate the interface structure and optimize the film position to match the experimental findings shown in the figure below:
@@ -161,10 +161,3 @@ To adjust the interface optimization:
- Enable 3D visualization with `SHOW_3D_LANDSCAPE = True`
## References.
-
-1. Dahal, A., & Batzill, M. (2014). Graphene–nickel interfaces: a review. Nanoscale, 6(5), 2548-2562. [DOI: 10.1039/c3nr05279f](https://doi.org/10.1039/c3nr05279f)
-
-2. Gamo, Y., Nagashima, A., Wakabayashi, M., Terai, M., & Oshima, C. (1997). Atomic structure of monolayer graphite formed on Ni(111). Surface Science, 374(1-3), 61-64. [DOI: 10.1016/S0039-6028(96)01307-3](https://www.sciencedirect.com/science/article/abs/pii/S0039602896007856)
-
-3. Bertoni, G., Calmels, L., Altibelli, A., & Serin, V. (2004). First-principles calculation of the electronic structure and EELS spectra at the graphene/Ni(111) interface. Physical Review B, 71(7). [DOI: 10.1103/PhysRevB.71.075402](https://journals.aps.org/prb/abstract/10.1103/PhysRevB.71.075402)
-
From 091800322f3949b8141d783f5f41fe3f0a986f1f Mon Sep 17 00:00:00 2001
From: VsevolodX <79542055+VsevolodX@users.noreply.github.com>
Date: Mon, 6 Jan 2025 11:32:07 -0800
Subject: [PATCH 12/20] update: more bibtex refs 2
---
lang/en/docs/includes/references.bib | 116 +++++++++++++++++-
.../passivation-edge-silicon-nanowire.md | 19 +--
.../passivation-surface-silicon-surface.md | 9 +-
.../specific/perturbation-ripples-graphene.md | 9 +-
.../specific/slab-strontium-titanate.md | 6 +-
5 files changed, 128 insertions(+), 31 deletions(-)
diff --git a/lang/en/docs/includes/references.bib b/lang/en/docs/includes/references.bib
index a1766cd5..7b4f3fea 100644
--- a/lang/en/docs/includes/references.bib
+++ b/lang/en/docs/includes/references.bib
@@ -358,4 +358,118 @@ @article{Bertoni2004
year = {2004},
@doi = {10.1103/PhysRevB.71.075402},
url = {https://journals.aps.org/prb/abstract/10.1103/PhysRevB.71.075402}
-}
\ No newline at end of file
+}
+
+@article{Aradi2007,
+ author = {Aradi, B. and Ramos, L. E. and Deák, P. and Köhler, Th. and Bechstedt, F. and Zhang, R. Q. and Frauenheim, Th.},
+ journal = {Phys. Rev. B},
+ number = {3},
+ pages = {035305},
+ title = {Theoretical study of the chemical gap tuning in silicon nanowires},
+ volume = {76},
+ year = {2007},
+ @doi = {10.1103/PhysRevB.76.035305},
+url = {https://doi.org/10.1103/PhysRevB.76.035305}
+}
+
+
+@article{Hansen1998,
+title = {Hydrogen passivation of silicon surfaces: A classical molecular-dynamics study},
+author = {Hansen, U. and Vogl, P.},
+journal = {Physical Review B},
+number = {20},
+pages = {13295--13304},
+volume = {57},
+year = {1998},
+ @doi = {10.1103/physrevb.57.13295},
+ url = {https://doi.org/10.1103/physrevb.57.13295},
+}
+
+@article{Northrup1991,
+title = {Structure of Si(100)H: Dependence on the H chemical potential},
+author = {Northrup, J. E.},
+journal = {Physical Review B},
+number = {3},
+pages = {1419--1422},
+volume = {44},
+year = {1991},
+@doi = {10.1103/physrevb.44.1419},
+url = {https://doi.org/10.1103/physrevb.44.1419},
+}
+
+@article{Boland1990,
+title = {Structure of the H‐saturated Si(100) surface},
+author = {Boland, J. J.},
+journal = {Physical Review Letters},
+number = {26},
+pages = {3325--3328},
+volume = {65},
+year = {1990},
+@doi = {10.1103/physrevlett.65.3325},
+url = {https://doi.org/10.1103/physrevlett.65.3325},
+}
+
+@article{ThompsonFlagg2009,
+ title = {Rippling of graphene},
+ author = {Thompson-Flagg, R. C. and Moura, M. J. B. and Marder, M.},
+ journal = {EPL (Europhysics Letters)},
+ volume = {85},
+ number = {4},
+ pages = {46002},
+ year = {2009},
+ @doi = {10.1209/0295-5075/85/46002},
+url={https://doi.org/10.1209/0295-5075/85/46002}
+}
+
+@article{Fasolino2007,
+ title = {Intrinsic ripples in graphene},
+ author = {Fasolino, A. and Los, J. H. and Katsnelson, M. I.},
+ journal = {Nature Materials},
+ volume = {6},
+ pages = {858-861},
+ year = {2007},
+ @doi = {10.1038/nmat2011},
+url={https://doi.org/10.1038/nmat2011}
+}
+
+@article{Openov2010,
+ title = {Interaction of the Stone-Wales defects in graphene},
+ author = {Openov, L. A. and Podlivaev, A. I.},
+ journal = {Physics of the Solid State},
+ volume = {52},
+ number = {1},
+ pages = {2010},
+ year = {2010},
+ @doi = {10.1134/S1063783415070240},
+url={https://doi.org/10.1134/S1063783415070240}
+}
+
+@article{Eglitis2008,
+ title = {First-principles calculations of atomic and electronic structure of SrTiO3 (001) and (011) surfaces},
+ author = {Eglitis, R. I. and Vanderbilt, David},
+ journal = {Phys. Rev. B},
+ volume = {77},
+ issue = {19},
+ pages = {195408},
+ numpages = {10},
+ year = {2008},
+ month = {May},
+ publisher = {American Physical Society},
+ @doi = {10.1103/PhysRevB.77.195408},
+ url = {https://link.aps.org/doi/10.1103/PhysRevB.77.195408}
+}
+
+@article{Mukhopadhyay2006,
+ title = {First-principles calculations of structural and electronic properties of monoclinic hafnia surfaces},
+ author = {Mukhopadhyay, Atashi B. and Sanz, Javier F. and Musgrave, Charles B.},
+ journal = {Phys. Rev. B},
+ volume = {73},
+ issue = {11},
+ pages = {115330},
+ numpages = {9},
+ year = {2006},
+ month = {Mar},
+ publisher = {American Physical Society},
+ @doi = {10.1103/PhysRevB.73.115330},
+ url = {https://link.aps.org/doi/10.1103/PhysRevB.73.115330}
+}
diff --git a/lang/en/docs/tutorials/materials/specific/passivation-edge-silicon-nanowire.md b/lang/en/docs/tutorials/materials/specific/passivation-edge-silicon-nanowire.md
index f1b59854..07b696d4 100644
--- a/lang/en/docs/tutorials/materials/specific/passivation-edge-silicon-nanowire.md
+++ b/lang/en/docs/tutorials/materials/specific/passivation-edge-silicon-nanowire.md
@@ -1,4 +1,13 @@
---
+tags:
+ - silicon
+ - hydrogen
+ - passivation
+ - nanowire
+ - Si
+ - H
+hide:
+ - tags
# YAML header
render_macros: true
---
@@ -14,7 +23,7 @@ This tutorial demonstrates the process of creating passivated silicon nanowires
B. Aradi, L. E. Ramos, P. Deák, Th. Köhler, F. Bechstedt, R. Q. Zhang, and Th. Frauenheim,
"Theoretical study of the chemical gap tuning in silicon nanowires"
Phys. Rev. B 76, 035305 (2007)
- DOI: [10.1103/PhysRevB.76.035305](https://doi.org/10.1103/PhysRevB.76.035305)
+ DOI: [10.1103/PhysRevB.76.035305](https://doi.org/10.1103/PhysRevB.76.035305) [@Aradi2007]
We will focus on creating silicon nanowires with hydrogen passivation from FIG. 1.
@@ -199,11 +208,3 @@ The following JupyterLite notebook demonstrates the process of creating material
## References.
-1. B. Aradi, L. E. Ramos, P. Deák, Th. Köhler, F. Bechstedt, R. Q. Zhang, and Th. Frauenheim,
- Theoretical study of the chemical gap tuning in silicon nanowires
- Phys. Rev. B 76, 035305 (2007)
- DOI: [10.1103/PhysRevB.76.035305](https://doi.org/10.1103/PhysRevB.76.035305)
-
-## Tags.
-
- `silicon`, `hydrogen`, `passivation`, `nanowire`
diff --git a/lang/en/docs/tutorials/materials/specific/passivation-surface-silicon-surface.md b/lang/en/docs/tutorials/materials/specific/passivation-surface-silicon-surface.md
index a0af1aae..457e7f56 100644
--- a/lang/en/docs/tutorials/materials/specific/passivation-surface-silicon-surface.md
+++ b/lang/en/docs/tutorials/materials/specific/passivation-surface-silicon-surface.md
@@ -25,7 +25,7 @@ This tutorial demonstrates how to passivate a reconstructed silicon (100) surfac
Hansen, U., & Vogl, P.
"Hydrogen passivation of silicon surfaces: A classical molecular-dynamics study."
Physical Review B, 57(20), 13295–13304. (1998)
- [DOI: 10.1103/PhysRevB.57.13295](https://doi.org/10.1103/PhysRevB.57.13295){:target='_blank'}.
+ [DOI: 10.1103/PhysRevB.57.13295](https://doi.org/10.1103/PhysRevB.57.13295){:target='_blank'}. [@Hansen1998; @Northrup1991; @Boland1990]
We will recreate the passivated surface structure shown in Fig. 8:
@@ -185,10 +185,3 @@ To adjust the passivation:
- Change `PASSIVANT` to use different passivating species
## References.
-
-1. Hansen, U., & Vogl, P. (1998). Hydrogen passivation of silicon surfaces: A classical molecular-dynamics study. Physical Review B, 57(20), 13295–13304.
-
-2. Northrup, J. E. (1991). Structure of Si(100)H: Dependence on the H chemical potential. Physical Review B, 44(3), 1419–1422.
-
-3. Boland, J. J. (1990). Structure of the H‐saturated Si(100) surface. Physical Review Letters, 65(26), 3325–3328.
-
diff --git a/lang/en/docs/tutorials/materials/specific/perturbation-ripples-graphene.md b/lang/en/docs/tutorials/materials/specific/perturbation-ripples-graphene.md
index 67f08893..b13ed2c2 100644
--- a/lang/en/docs/tutorials/materials/specific/perturbation-ripples-graphene.md
+++ b/lang/en/docs/tutorials/materials/specific/perturbation-ripples-graphene.md
@@ -23,7 +23,7 @@ This tutorial demonstrates the process of creating edge induced ripples in graph
Thompson-Flagg, R. C., Moura, M. J. B., & Marder, M.
"Rippling of graphene"
EPL (Europhysics Letters), 85(4), 46002 (2009)
- [DOI: 10.1209/0295-5075/85/46002](https://doi.org/10.1209/0295-5075/85/46002){:target='_blank'}.
+ [DOI: 10.1209/0295-5075/85/46002](https://doi.org/10.1209/0295-5075/85/46002){:target='_blank'}. [@ThompsonFlagg2009; @Fasolino2007; @Openov2010]
We will focus on creating graphene with edge-induced ripples that match the patterns observed in experimental studies, as shown in FIG. 1.
@@ -184,10 +184,3 @@ If user need to adjust the ripple pattern, user can modify these key parameters:
- Adjust PHASE_X and PHASE_Y to modify the wave interference pattern
## References.
-
-1. Thompson-Flagg, R. C., Moura, M. J. B., & Marder, M. (2009). Rippling of graphene. EPL (Europhysics Letters), 85(4), 46002. [DOI: 10.1209/0295-5075/85/46002](https://doi.org/10.1209/0295-5075/85/46002)
-
-2. A. Fasolino, J. H. Los and M. I. Katsnelson, "Intrinsic ripples in graphene," Nature Materials, 6, 858-861 (2007). [DOI: 10.1038/nmat2011](https://doi.org/10.1038/nmat2011)
-
-3. L. A. Openov & A. I. Podlivaev, "Interaction of the Stone-Wales defects in graphene", Physics of the Solid State, 52, 1, 2010. [DOI: 10.1134/S1063783415070240](https://doi.org/10.1134/S1063783415070240)
-
diff --git a/lang/en/docs/tutorials/materials/specific/slab-strontium-titanate.md b/lang/en/docs/tutorials/materials/specific/slab-strontium-titanate.md
index f76d4d9a..064a0e07 100644
--- a/lang/en/docs/tutorials/materials/specific/slab-strontium-titanate.md
+++ b/lang/en/docs/tutorials/materials/specific/slab-strontium-titanate.md
@@ -23,7 +23,7 @@ This tutorial demonstrates the process of creating strontium titanate (SrTiO3 (011) slabs with different terminations from FIG. 2.
@@ -138,7 +138,3 @@ The following JupyterLite notebook demonstrates the process of creating strontiu
## References.
-1. R. I. Eglitis and David Vanderbilt, "First-principles calculations of atomic and electronic structure of SrTiO3 (001) and (011) surfaces", Phys. Rev. B 77, 195408 (2008) [DOI: 10.1103/PhysRevB.77.195408](https://doi.org/10.1103/PhysRevB.77.195408)
-
-2. Atashi B. Mukhopadhyay, Javier F. Sanz, and Charles B. Musgrave "First-principles calculations of structural and electronic properties of monoclinic hafnia surfaces", Phys. Rev. B 73, 115330 (2006) DOI: [10.1103/PhysRevB.73.115330](https://doi.org/10.1103/PhysRevB.73.115330)
-
From e6831f22a261aed695d68095cba2d4ebb4e28388 Mon Sep 17 00:00:00 2001
From: VsevolodX <79542055+VsevolodX@users.noreply.github.com>
Date: Mon, 6 Jan 2025 11:49:51 -0800
Subject: [PATCH 13/20] update: use new references style
---
.../specific/defect-point-interstitial-tin-oxide.md | 4 +---
.../materials/specific/defect-point-pair-gallium-nitride.md | 4 +---
.../specific/defect-point-substitution-graphene.md | 4 +---
.../specific/defect-point-vacancy-boron-nitride.md | 4 +---
.../materials/specific/defect-surface-adatom-graphene.md | 4 +---
.../specific/defect-surface-island-titanium-nitride.md | 4 +---
.../materials/specific/defect-surface-step-platinum.md | 4 +---
.../specific/defect_point_adatom_island_mos2_pt.md | 4 +---
.../materials/specific/grain-boundary-2d-boron-nitride.md | 4 +---
.../specific/grain-boundary-3d-fcc-metals-copper.md | 4 +---
...icon-silicon-dioxide-hafnium-dioxide-titanium-nitride.md | 6 ++++--
.../specific/interface-2d-3d-graphene-silicon-dioxide.md | 4 +---
12 files changed, 15 insertions(+), 35 deletions(-)
diff --git a/lang/en/docs/tutorials/materials/specific/defect-point-interstitial-tin-oxide.md b/lang/en/docs/tutorials/materials/specific/defect-point-interstitial-tin-oxide.md
index fe617ec6..7d9c4400 100644
--- a/lang/en/docs/tutorials/materials/specific/defect-point-interstitial-tin-oxide.md
+++ b/lang/en/docs/tutorials/materials/specific/defect-point-interstitial-tin-oxide.md
@@ -25,7 +25,7 @@ This tutorial demonstrates how to create an oxygen interstitial defect in tin mo
A. Togo, F. Oba, and I. Tanaka
"First-principles calculations of native defects in tin monoxide"
Physical Review B 74, 195128 (2006)
- [DOI: 10.1103/PhysRevB.74.195128](https://doi.org/10.1103/PhysRevB.74.195128){:target='_blank'}.
+ [DOI: 10.1103/PhysRevB.74.195128](https://doi.org/10.1103/PhysRevB.74.195128){:target='_blank'}. [@Togo2006; @Wang2014; @Na-Phattalung2006]
We will recreate the O-interstitial defect structure shown in Fig. 4 a) using [Voronoi](https://github.com/Exabyte-io/made/blob/9e13b350eaaa5d49c81a3b30f76c165480825d72/src/py/mat3ra/made/tools/build/defect/builders.py#L125) placement method.
@@ -154,5 +154,3 @@ To adjust the defect creation:
- Consider periodic boundary conditions effects
## References.
-
-Cite the following works: [@Togo2006], [@Wang2014], and [@Na-Phattalung2006].
diff --git a/lang/en/docs/tutorials/materials/specific/defect-point-pair-gallium-nitride.md b/lang/en/docs/tutorials/materials/specific/defect-point-pair-gallium-nitride.md
index 5e58e9ff..01f5e292 100644
--- a/lang/en/docs/tutorials/materials/specific/defect-point-pair-gallium-nitride.md
+++ b/lang/en/docs/tutorials/materials/specific/defect-point-pair-gallium-nitride.md
@@ -27,7 +27,7 @@ This tutorial demonstrates the process of creating material with nitrogen vacanc
!!!note "Manuscript"
**Giacomo Miceli, Alfredo Pasquarello**,
"Self-compensation due to point defects in Mg-doped GaN", Physical Review B, 2016.
- [DOI: 10.1103/PhysRevB.93.165207](https://journals.aps.org/prb/abstract/10.1103/PhysRevB.93.165207){:target='_blank'}.
+ [DOI: 10.1103/PhysRevB.93.165207](https://journals.aps.org/prb/abstract/10.1103/PhysRevB.93.165207){:target='_blank'}. [@Miceli2016]
We use the [Materials Designer](../../../materials-designer/overview.md) to create a supercell of GaN, identify the crystal site positions for defects, and introduce nitrogen atoms and vacancies accordingly.
@@ -134,5 +134,3 @@ The following JupyterLite notebook demonstrates the process of creating material
{% endwith %}
## References.
-
-Cite the following works: [@Miceli2016]
diff --git a/lang/en/docs/tutorials/materials/specific/defect-point-substitution-graphene.md b/lang/en/docs/tutorials/materials/specific/defect-point-substitution-graphene.md
index 76e562ef..9f0bceab 100644
--- a/lang/en/docs/tutorials/materials/specific/defect-point-substitution-graphene.md
+++ b/lang/en/docs/tutorials/materials/specific/defect-point-substitution-graphene.md
@@ -21,7 +21,7 @@ This tutorial demonstrates the process of creating materials with substitution d
[//]: # (