forked from XuhanLiu/DrugEx
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_smiles.py
108 lines (88 loc) · 3.87 KB
/
train_smiles.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
#!/usr/bin/env python
import os
import pandas as pd
from shutil import copy2
import utils
import getopt
import sys
import time
import torch
from models import GPT2Model
from models import generator
from models.explorer import SmilesExplorer
from torch.utils.data import DataLoader, TensorDataset
def pretrain(method='gpt'):
if method == 'ved':
agent = generator.EncDec(voc, voc).to(utils.dev)
elif method == 'attn':
agent = generator.Seq2Seq(voc, voc).to(utils.dev)
else:
agent = GPT2Model(voc, n_layer=12).to(utils.dev)
out = 'output/%s_%s_%d' % (dataset, method, BATCH_SIZE)
agent.fit(data_loader, test_loader, epochs=1000, out=out)
def rl_train():
opts, args = getopt.getopt(sys.argv[1:], "a:e:b:g:c:s:z:")
OPT = dict(opts)
case = OPT['-c'] if '-c' in OPT else 'OBJ1'
z = OPT['-z'] if '-z' in OPT else 'REG'
alg = OPT['-a'] if '-a' in OPT else 'smile'
os.environ["CUDA_VISIBLE_DEVICES"] = OPT['-g'] if '-g' in OPT else "0,1,2,3"
voc = utils.VocSmiles(init_from_file="data/voc_smiles.txt", max_len=100)
agent = GPT2Model(voc, n_layer=12)
agent.load_state_dict(torch.load(params['pr_path'] + '.pkg', map_location=utils.dev))
prior = GPT2Model(voc, n_layer=12)
prior.load_state_dict(torch.load(params['ft_path'] + '.pkg', map_location=utils.dev))
evolver = SmilesExplorer(agent, mutate=prior)
evolver.batch_size = BATCH_SIZE
evolver.epsilon = float(OPT.get('-e', '1e-2'))
evolver.sigma = float(OPT.get('-b', '0.00'))
evolver.scheme = OPT.get('-s', 'WS')
evolver.repeat = 1
keys = ['A2A', 'QED']
A2A = utils.Predictor('output/env/RF_%s_CHEMBL251.pkg' % z, type=z)
QED = utils.Property('QED')
# Chose the desirability function
objs = [A2A, QED]
if evolver.scheme == 'WS':
mod1 = utils.ClippedScore(lower_x=3, upper_x=10)
mod2 = utils.ClippedScore(lower_x=0, upper_x=1)
ths = [0.5, 0]
else:
mod1 = utils.ClippedScore(lower_x=3, upper_x=6.5)
mod2 = utils.ClippedScore(lower_x=0, upper_x=0.5)
ths = [0.99, 0]
mods = [mod1, mod2] if case == 'OBJ3' else [mod1, mod2]
evolver.env = utils.Env(objs=objs, mods=mods, keys=keys, ths=ths)
root = 'output/%s_%s' % (alg, time.strftime('%y%m%d_%H%M%S', time.localtime()))
os.mkdir(root)
copy2(alg + '_ex.py', root)
copy2(alg + '.py', root)
# import evolve as agent
evolver.out = root + '/%s_%s_%s_%s_%.0e' % (alg, evolver.scheme, z, case, evolver.epsilon)
evolver.fit(data_loader, test_loader=test_loader)
if __name__ == "__main__":
params = {'pr_path': 'output/ligand_mf_brics_gpt_256', 'ft_path': 'output/ligand_mf_brics_gpt_256'}
opts, args = getopt.getopt(sys.argv[1:], "m:g:b:d:")
OPT = dict(opts)
torch.cuda.set_device(0)
os.environ["CUDA_VISIBLE_DEVICES"] = OPT.get('-g', "0,1,2,3")
method = OPT.get('-m', 'gpt')
step = OPT['-s']
BATCH_SIZE = int(OPT.get('-b', '256'))
dataset = OPT.get('-d', 'ligand_mf_brics')
data = pd.read_table('data/%s_train_smi.txt' % dataset)
test = pd.read_table('data/%s_test_smi.txt' % dataset)
test = test.Input.drop_duplicates().sample(BATCH_SIZE * 10).values
if method in ['gpt']:
voc = utils.Voc('data/voc_smiles.txt', src_len=100, trg_len=100)
else:
voc = utils.VocSmiles('data/voc_smiles.txt', max_len=100)
data_in = voc.encode([seq.split(' ') for seq in data.Input.values])
data_out = voc.encode([seq.split(' ') for seq in data.Output.values])
data_set = TensorDataset(data_in, data_out)
data_loader = DataLoader(data_set, batch_size=BATCH_SIZE, shuffle=True)
test_set = voc.encode([seq.split(' ') for seq in test])
test_set = utils.TgtData(test_set, ix=[voc.decode(seq, is_tk=False) for seq in test_set])
test_loader = DataLoader(test_set, batch_size=BATCH_SIZE, collate_fn=test_set.collate_fn)
pretrain(method=method)
rl_train()