-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathmain.py
145 lines (125 loc) · 6.14 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import json
import os
import sys
import time
import torch
from training.training import Trainer
from data.conversion import GridDataConverter, PointCloudDataConverter, ERA5Converter
from data.dataloaders import mnist, celebahq
from data.dataloaders_era5 import era5
from data.dataloaders3d import shapenet_voxels, shapenet_point_clouds
from models.discriminator import PointConvDiscriminator
from models.function_distribution import HyperNetwork, FunctionDistribution
from models.function_representation import FunctionRepresentation, FourierFeatures
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Get config file from command line arguments
if len(sys.argv) != 2:
raise(RuntimeError("Wrong arguments, use python main.py <config_path>"))
config_path = sys.argv[1]
# Open config file
with open(config_path) as f:
config = json.load(f)
if config["path_to_data"] == "":
raise(RuntimeError("Path to data not specified. Modify path_to_data attribute in config to point to data."))
# Create a folder to store experiment results
timestamp = time.strftime("%Y-%m-%d_%H-%M")
directory = "{}_{}".format(timestamp, config["id"])
if not os.path.exists(directory):
os.makedirs(directory)
# Save config file in experiment directory
with open(directory + '/config.json', 'w') as f:
json.dump(config, f)
# Setup dataloader
is_voxel = False
is_point_cloud = False
is_era5 = False
if config["dataset"] == 'mnist':
dataloader = mnist(path_to_data=config["path_to_data"],
batch_size=config["training"]["batch_size"],
size=config["resolution"],
train=True)
input_dim = 2
output_dim = 1
data_shape = (1, config["resolution"], config["resolution"])
elif config["dataset"] == 'celebahq':
dataloader = celebahq(path_to_data=config["path_to_data"],
batch_size=config["training"]["batch_size"],
size=config["resolution"])
input_dim = 2
output_dim = 3
data_shape = (3, config["resolution"], config["resolution"])
elif config["dataset"] == 'shapenet_voxels':
dataloader = shapenet_voxels(path_to_data=config["path_to_data"],
batch_size=config["training"]["batch_size"],
size=config["resolution"])
input_dim = 3
output_dim = 1
data_shape = (1, config["resolution"], config["resolution"], config["resolution"])
is_voxel = True
elif config["dataset"] == 'shapenet_point_clouds':
dataloader = shapenet_point_clouds(path_to_data=config["path_to_data"],
batch_size=config["training"]["batch_size"])
input_dim = 3
output_dim = 1
data_shape = (1, config["resolution"], config["resolution"], config["resolution"])
is_point_cloud = True
elif config["dataset"] == 'era5':
dataloader = era5(path_to_data=config["path_to_data"],
batch_size=config["training"]["batch_size"])
input_dim = 3
output_dim = 1
data_shape = (46, 90)
is_era5 = True
# Setup data converter
if is_point_cloud:
data_converter = PointCloudDataConverter(device, data_shape, normalize_features=True)
elif is_era5:
data_converter = ERA5Converter(device, data_shape, normalize_features=True)
else:
data_converter = GridDataConverter(device, data_shape, normalize_features=True)
# Setup encoding for function distribution
num_frequencies = config["generator"]["encoding"]["num_frequencies"]
std_dev = config["generator"]["encoding"]["std_dev"]
if num_frequencies:
frequency_matrix = torch.normal(mean=torch.zeros(num_frequencies, input_dim),
std=std_dev).to(device)
encoding = FourierFeatures(frequency_matrix)
else:
encoding = torch.nn.Identity()
# Setup generator models
final_non_linearity = torch.nn.Tanh()
non_linearity = torch.nn.LeakyReLU(0.1)
function_representation = FunctionRepresentation(input_dim, output_dim,
config["generator"]["layer_sizes"],
encoding, non_linearity,
final_non_linearity).to(device)
hypernetwork = HyperNetwork(function_representation, config["generator"]["latent_dim"],
config["generator"]["hypernet_layer_sizes"], non_linearity).to(device)
function_distribution = FunctionDistribution(hypernetwork).to(device)
# Setup discriminator
discriminator = PointConvDiscriminator(input_dim, output_dim, config["discriminator"]["layer_configs"],
linear_layer_sizes=config["discriminator"]["linear_layer_sizes"],
norm_order=config["discriminator"]["norm_order"],
add_sigmoid=True,
add_batchnorm=config["discriminator"]["add_batchnorm"],
add_weightnet_batchnorm=config["discriminator"]["add_weightnet_batchnorm"],
deterministic=config["discriminator"]["deterministic"],
same_coordinates=config["discriminator"]["same_coordinates"]).to(device)
print("\nFunction distribution")
print(hypernetwork)
print("Number of parameters: {}".format(count_parameters(hypernetwork)))
print("\nDiscriminator")
print(discriminator)
print("Number of parameters: {}".format(count_parameters(discriminator)))
# Setup trainer
trainer = Trainer(device, function_distribution, discriminator, data_converter,
lr=config["training"]["lr"], lr_disc=config["training"]["lr_disc"],
r1_weight=config["training"]["r1_weight"],
max_num_points=config["training"]["max_num_points"],
print_freq=config["training"]["print_freq"], save_dir=directory,
model_save_freq=config["training"]["model_save_freq"],
is_voxel=is_voxel, is_point_cloud=is_point_cloud,
is_era5=is_era5)
trainer.train(dataloader, config["training"]["epochs"])