-
Notifications
You must be signed in to change notification settings - Fork 0
/
metafile.yml
277 lines (262 loc) · 8.76 KB
/
metafile.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
Collections:
- Name: Mask R-CNN
Metadata:
Training Data: COCO
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Resources: 8x NVIDIA V100 GPUs
Architecture:
- Softmax
- RPN
- Convolution
- Dense Connections
- FPN
- ResNet
- RoIAlign
Paper: https://arxiv.org/abs/1703.06870v3
README: configs/mask_rcnn/README.md
Models:
- Name: mask_rcnn_r50_caffe_fpn_1x_coco
In Collection: Mask R-CNN
Config: configs/mask_rcnn/mask_rcnn_r50_caffe_fpn_1x_coco.py
Metadata:
Training Memory (GB): 4.3
Epochs: 12
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 38.0
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 34.4
Weights: http://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_caffe_fpn_1x_coco/mask_rcnn_r50_caffe_fpn_1x_coco_bbox_mAP-0.38__segm_mAP-0.344_20200504_231812-0ebd1859.pth
- Name: mask_rcnn_r50_fpn_1x_coco
In Collection: Mask R-CNN
Config: configs/mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py
Metadata:
Training Memory (GB): 4.4
inference time (s/im): 0.06211
Epochs: 12
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 38.2
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 34.7
Weights: http://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_fpn_1x_coco/mask_rcnn_r50_fpn_1x_coco_20200205-d4b0c5d6.pth
- Name: mask_rcnn_r50_fpn_2x_coco
In Collection: Mask R-CNN
Config: configs/mask_rcnn/mask_rcnn_r50_fpn_2x_coco.py
Metadata:
Training Memory (GB): 4.4
inference time (s/im): 0.06211
Epochs: 24
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 39.2
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 35.4
Weights: http://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_fpn_2x_coco/mask_rcnn_r50_fpn_2x_coco_bbox_mAP-0.392__segm_mAP-0.354_20200505_003907-3e542a40.pth
- Name: mask_rcnn_r101_caffe_fpn_1x_coco
In Collection: Mask R-CNN
Config: configs/mask_rcnn/mask_rcnn_r101_caffe_fpn_1x_coco.py
Metadata:
Epochs: 12
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 40.4
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 36.4
Weights: http://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r101_caffe_fpn_1x_coco/mask_rcnn_r101_caffe_fpn_1x_coco_20200601_095758-805e06c1.pth
- Name: mask_rcnn_r101_fpn_1x_coco
In Collection: Mask R-CNN
Config: configs/mask_rcnn/mask_rcnn_r101_fpn_1x_coco.py
Metadata:
Training Memory (GB): 6.4
inference time (s/im): 0.07407
Epochs: 12
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 40.0
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 36.1
Weights: http://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r101_fpn_1x_coco/mask_rcnn_r101_fpn_1x_coco_20200204-1efe0ed5.pth
- Name: mask_rcnn_r101_fpn_2x_coco
In Collection: Mask R-CNN
Config: configs/mask_rcnn/mask_rcnn_r101_fpn_2x_coco.py
Metadata:
Training Memory (GB): 6.4
inference time (s/im): 0.07407
Epochs: 24
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 40.8
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 36.6
Weights: http://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r101_fpn_2x_coco/mask_rcnn_r101_fpn_2x_coco_bbox_mAP-0.408__segm_mAP-0.366_20200505_071027-14b391c7.pth
- Name: mask_rcnn_x101_32x4d_fpn_1x_coco
In Collection: Mask R-CNN
Config: configs/mask_rcnn/mask_rcnn_x101_32x4d_fpn_1x_coco.py
Metadata:
Training Memory (GB): 7.6
inference time (s/im): 0.0885
Epochs: 12
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 41.9
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 37.5
Weights: http://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_x101_32x4d_fpn_1x_coco/mask_rcnn_x101_32x4d_fpn_1x_coco_20200205-478d0b67.pth
- Name: mask_rcnn_x101_32x4d_fpn_2x_coco
In Collection: Mask R-CNN
Config: configs/mask_rcnn/mask_rcnn_x101_32x4d_fpn_2x_coco.py
Metadata:
Training Memory (GB): 7.6
inference time (s/im): 0.0885
Epochs: 24
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 42.2
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 37.8
Weights: http://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_x101_32x4d_fpn_2x_coco/mask_rcnn_x101_32x4d_fpn_2x_coco_bbox_mAP-0.422__segm_mAP-0.378_20200506_004702-faef898c.pth
- Name: mask_rcnn_x101_64x4d_fpn_1x_coco
In Collection: Mask R-CNN
Config: configs/mask_rcnn/mask_rcnn_x101_64x4d_fpn_1x_coco.py
Metadata:
Training Memory (GB): 10.7
inference time (s/im): 0.125
Epochs: 12
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 42.8
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 38.4
Weights: http://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_x101_64x4d_fpn_1x_coco/mask_rcnn_x101_64x4d_fpn_1x_coco_20200201-9352eb0d.pth
- Name: mask_rcnn_x101_64x4d_fpn_2x_coco
In Collection: Mask R-CNN
Config: configs/mask_rcnn/mask_rcnn_x101_64x4d_fpn_2x_coco.py
Metadata:
Training Memory (GB): 10.7
inference time (s/im): 0.125
Epochs: 24
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 42.7
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 38.1
Weights: http://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_x101_64x4d_fpn_2x_coco/mask_rcnn_x101_64x4d_fpn_2x_coco_20200509_224208-39d6f70c.pth
- Name: mask_rcnn_x101_32x8d_fpn_1x_coco
In Collection: Mask R-CNN
Config: configs/mask_rcnn/mask_rcnn_x101_32x8d_fpn_1x_coco.py
Metadata:
Training Memory (GB): 10.7
inference time (s/im): 0.125
Epochs: 12
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 42.8
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 38.3
- Name: mask_rcnn_r50_caffe_fpn_mstrain-poly_2x_coco
In Collection: Mask R-CNN
Config: configs/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_2x_coco.py
Metadata:
Training Memory (GB): 4.3
Epochs: 24
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 40.3
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 36.5
Weights: http://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_2x_coco/mask_rcnn_r50_caffe_fpn_mstrain-poly_2x_coco_bbox_mAP-0.403__segm_mAP-0.365_20200504_231822-a75c98ce.pth
- Name: mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco
In Collection: Mask R-CNN
Config: configs/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco.py
Metadata:
Training Memory (GB): 4.3
Epochs: 36
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 40.8
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 37.0
Weights: http://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco/mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco_bbox_mAP-0.408__segm_mAP-0.37_20200504_163245-42aa3d00.pth
- Name: mask_rcnn_x101_32x8d_fpn_mstrain-poly_1x_coco
In Collection: Mask R-CNN
Config: configs/mask_rcnn/mask_rcnn_x101_32x8d_fpn_mstrain-poly_1x_coco.py
Metadata:
Epochs: 12
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 43.6
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 39.0
- Name: mask_rcnn_x101_32x8d_fpn_mstrain-poly_3x_coco
In Collection: Mask R-CNN
Config: configs/mask_rcnn/mask_rcnn_x101_32x8d_fpn_mstrain-poly_3x_coco.py
Metadata:
Epochs: 36
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 44.0
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 39.3